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Abstract

Multimodal sentiment analysis (MSA) is an
important way of observing mental activities
with the help of data captured from multiple
modalities. However, due to the recording or
transmission error, some modalities may in-
clude incomplete data. Most existing works
that address missing modalities usually assume
a particular modality is completely missing and
seldom consider a mixture of missing across
multiple modalities. In this paper, we propose
a simple yet effective meta-sampling approach
for multimodal sentiment analysis with miss-
ing modalities, namely Missing Modality-based
Meta Sampling (M3S). To be specific, M3S for-
mulates a missing modality sampling strategy
into the modal agnostic meta-learning (MAML)
framework. M3S can be treated as an efficient
add-on training component on existing models
and significantly improve their performances
on multimodal data with a mixture of miss-
ing modalities. We conduct experiments on
IEMOCAP, SIMS and CMU-MOSI datasets,
and superior performance is achieved compared
with recent state-of-the-art methods.

1 Introduction

Multimodal sentiment analysis (MSA) aims to esti-
mate human mental activities by multimodal data,
such as a combination of audio, video, and text.
Though much progress has been made recently,
there still exist challenges, including missing modal-
ity problem. In reality, missing modality is a com-
mon problem due to the errors in data collection,
storage, and transmission. To address the issue with
missing modality in MSA, many approaches have
been proposed (Ma et al., 2021c; Zhao et al., 2021;
Ma et al., 2021b; Parthasarathy and Sundaram,
2020; Ma et al., 2021a; Tran et al., 2017).

In general, methods that address the missing
modality issue usually only consider the situation
where a certain input modality is severely damaged.
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Figure 1: M3S helps MMIN model achieve superior
performance.

The strategies of these proposed methods can be
divided into three categories: 1) Designing new ar-
chitectures with a reconstruction network to recover
missing modality with the information from other
modalities (Ma et al., 2021c; Ding et al., 2014); 2)
Formulating innovative and efficient loss functions
to tackle missing modality (Ma et al., 2021a, 2022);
3) Improving the encoding and embedding strate-
gies from existing models (Tran et al., 2017; Cai
et al., 2018).

In the MSA tasks, most of the proposed methods
focus on the situation where certain modalities
are completely missing and the other modalities
are complete. However, due to the transmission
or collection errors, each modality may contain
partial information based on a certain missing rate,
while existing methods seldom consider this type
of scenario and they are not suitable to be applied
directly in this situation. Besides, our experiments
also verify the inefficacy of existing methods in
such a challenging situation, which is demonstrated
in Section 5.

To address the aforementioned problem, in this
paper, we propose a simple yet effective solution to
the Missing Modality problem with Meta Sampling
in the MSA task, namely M3S. To be specific, M3S
combines the augmented missing modality trans-
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form in sampling, following the model-agnostic
meta-learning (MAML) framework (Finn et al.,
2017). M3S maintains the advantage of meta-
learning and makes models easily adapt to data
with different missing rates. M3S can be treated
as an efficient add-on training component on ex-
isting models and significantly improve their per-
formances on multimodal data with a mixture of
missing modalities. We conduct experiments on
IEMOCAP (Busso et al., 2008), SIMS (Yu et al.,
2020) and CMU-MOSI (Zadeh et al., 2016) datasets
and superior performance is achieved compared
with recent state-of-the-art (SOTA) methods. A
simple example is shown in Figure 1, demonstrating
the effectiveness of our proposed M3S compared
with other methods. More details are provided in
the experiment section.

The main contributions of our work are as fol-
lows:

• We formulate a simple yet effective meta-
training framework to address the problem
of a mixture of partial missing modalities in
the MSA tasks.

• The proposed method M3S can be treated as
an efficient add-on training component on ex-
isting models and significantly improve their
performances on dealing with missing modal-
ity.

• We conduct comprehensive experiments on
widely used datasets in MSA, including IEMO-
CAP, SIMS, and CMU-MOSI. Superior per-
formance is achieved compared with recent
SOTA methods.

2 Related Work

2.1 Emotion Recognition
Emotion recognition aims to identify and predict
emotions through these physiological and behav-
ioral responses. Emotions are expressed in a variety
of modality forms. However, early studies on emo-
tion recognition are often single modality. Shaheen
et al. (2014) and Calefato et al. (2017) present
novel approaches to automatic emotion recognition
from text. Burkert et al. (2015) and Deng et al.
(2020) conduct researches on facial expressions
and the emotions behind them. Koolagudi and Rao
(2012) and Yoon et al. (2019) exploit acoustic data
in different types of speeches for emotional recogni-
tion and classification tasks. Though much progress

has been made for emotion recognition with sin-
gle modality data, how to combine information
from diverse modalities has become an interesting
direction in this area.

2.2 Multimodal Sentiment Analysis

Multimodal sentiment analysis (MSA) is a popu-
lar area of research in the present since the world
we live in has several modality forms. When the
dataset consists of more than one modality infor-
mation, traditional single modality methods are
difficult to deal with. MSA mainly focuses on three
modalities: text, audio, and video. It makes use
of the complementarity of multimodal information
to improve the accuracy of emotion recognition.
However, the heterogeneity of data and signals
bring significant challenges because it creates dis-
tributional modality gaps. Hazarika et al. (2020)
propose a novel framework, MISA, which projects
each modality to two distinct subspaces to aid the
fusion process. And Hori et al. (2017) introduce
a multimodal attention model that can selectively
utilize features from different modalities. Since
the performance of a model highly depends on the
quality of multimodal fusion, Han et al. (2021b)
construct a framework named MultiModal InfoMax
(MMIM) to maximize the mutual information in
unimodal input pairs as well as obtain information
related to tasks through multimodal fusion process.
Besides, Han et al. (2021a) make use of an end-to-
end network Bi-Bimodal Fusion Network (BBFN)
to better utilize the dynamics of independence and
correlation between modalities. Due to the unified
multimodal annotation, previous methods are re-
stricted in capturing differentiated information. Yu
et al. (2021) design a label generation module based
on the self-supervised learning strategy. Then, joint
training the multimodal and unimodal tasks to learn
the consistency and difference. However, limited by
the pre-processed features, the results show that the
generated audio and vision labels are not significant
enough.

2.3 Missing Modality Problem

Compared with unimodal learning method, mul-
timodal learning has achieved great success. It
improves the performance of emotion recognition
tasks by effectively combining the information from
different modalities. However, the multimodal data
may have missing modalities in reality due to a
variety of reasons like signal transmission error
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and limited bandwidth. To deal with this problem,
Ma et al. (2021b) propose an efficient approach
based on maximum likelihood estimation to in-
corporate the knowledge in the modality-missing
data. Nonetheless, the more complex scenarios like
missing modalities exist in both training and test-
ing phases are not involved. What’s more, recent
studies aim to capture the common information in
different types of training data and leverage the
relatedness among different modalities (Ma et al.,
2021a; Tran et al., 2017; Parthasarathy and Sun-
daram, 2020; Wagner et al., 2011). To solve the
problem that modalities will be missing is uncer-
tain, Zhao et al. (2021) put forward a unified
model: Missing Modality Imagination Network
(MMIN). Ma et al. (2021c) utilize a new method
named SMIL that leverages Bayesian meta-learning
to handle the problem that modalities are partially
severely missing, e.g., 90% training examples may
have incomplete modalities.

3 Methodology

3.1 Problem Description
The multimodal sentiment analysis aims at pre-
dicting the sentiment labels Y based on the model
f(X ;θ) given the multimodal data X . We con-
sider the input data with three modalities, i.e.
X = (A,V,L), where A, V and L represents
audio, video and linguistic data, respectively. In
this paper, we tackle the missing modality issue,
where each modality can include missing data.

Algorithm 1 Meta-Sampling Training
Input: Multimodal dataset (X = (A,V,L),Y);

number of iterations K for inner loop; inner
learning rate α; outer learning rate β; esti-
mation model f(· ;θ); model’s loss function
l (f,Y).

1: while not converged do
2: Sample batch of data X1 and X2 from X .
3: Get X̃1 = T (X1 ;F) and X̃2 = T (X2 ;F).
4: Set θ0 ← θ
5: Meta-train:
6: for n = 0 to K − 1 do
7: θn+1 ← θn−α∇θn l

(
f(X̃1;θn),Y1

)
8: end for
9: θ∗ ← θK

10: Meta-update:
11: θ ← θ − β∇θ∗ l

(
f(X̃2;θ

∗),Y2
)

12: end while

3.2 Augmented Missing Modality Transform
Given a sample Xi = (Ai,Vi,Li) from X , we
use a augmented transform T (Xi ;F) to generate
a random sample with missing data based on a
distribution F . Specifically, for each modality
m ∈ {a, v, l}, we define a missing ratio rm ∈
[0, 1], where a, v and l stands for audio, video and
linguistic modality, respectively. For the encoded
feature in each modality m, we replace the values
between [λm, λm + km − 1] with zeros, where
km represents the number of missing values with
km = ⌊Tm · rm⌋ and Tm is the dimension of the
encoded feature. λm is sampled from the uniform
distribution, i.e., λm ∼ U(0, Tm−km). As a result,
the augmented sample with missing modality can be
obtained by X̃i = T (Xi ;F), where F represents
the composition of uniform distributions for each
individual modality.

3.3 Training with Meta-Sampling
Our M3S follows MAML training framework (Finn
et al., 2017) with augmentation sampling. For each
training iteration, we adopt the following steps.

First, we sample two independent batch of data,
X̃1 and X̃2, based on the augmented missing modal-
ity transforms, T (X1 ;F) and T (X2 ;F), where
the missing rate for each modality is determined by
the sampling distribution F . X̃1 and X̃2 are used as
tasks from support set and query set, respectively,
in the meta-learning.

Then, in the meta-train process, the model’s
parameter θ is updated using gradient descent based
on the loss function l

(
f(X̃1;θ),Y1

)
with the inner

learning rate α for each iteration n as follows:

θn+1 ← θn − α∇θn l
(
f(X̃1;θn),Y1

)
, (1)

where Y1 is the set of sentiment labels of X̃1, and
the loss function l

(
f(X̃1;θ),Y1

)
is determined by

loss used in each base model (i.e., MMIM, MISA,
Self-MM, MMIN. See Section 4.2 for more details).
The meta-train process is conducted forK iterations.
We denote θK as θ∗.

Finally, we use the query set X̃2 and its set of
sentiment labels Y2 in the outer loop meta-update
step. The model parameters are updated with the
learning rate β as follows:

θ ← θ − β∇θ∗ l
(
f(X̃2;θ

∗),Y2
)
. (2)

The whole algorithm in general case is shown
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Figure 2: The Overall Architecture of M3S. We first use augmented transform to generate two batches of data for
features from each modality. Then the meta-train and meta-update are conducted on the two batches of data to learn
the model parameters θ.

in Algorithm 1 and Figure 2 illustrates the meta-
sampling training process.

4 Experiment Setup

In this section, we present the setup of our ex-
periments, including the used datasets, baseline
methods, evaluation metrics, and implementation
details of the proposed method.

4.1 Datasets

We conduct our experiments on the following three
datasets, i.e., IEMOCAP (Busso et al., 2008), SIMS
(Yu et al., 2020) and CMU-MOSI (Zadeh et al.,
2016). The statistics of the datasets are reported in
Table 1.

• IEMOCAP comprises of several recorded
videos in 5 conversation sessions, and each
session contains many scripted plays and di-
alogues. The actors performed selected emo-
tional scripts and also improvised hypothetical
scenarios designed to elicit specific types of
emotions, which provided detailed informa-
tion about their facial expressions and hand
movements.

• SIMS dataset is a multimodal sentiment anal-
ysis benchmark containing 2281 video clips
from various sources (i.e., movies, shows, TV
serials, etc.). SIMS contains fine-grained an-
notations of different modalities and includes
people’s natural expressions in video clips.
And each sample in SIMS dataset is labeled
with a score from -1 to 1, standing for senti-
ment response (i.e., from strongly negative to
strongly positive).

Dataset Train Valid Test All

SIMS 1368 456 457 2281
MOSI 1284 229 686 2199
IEMOCAP 4446 3342 3168 10956

Table 1: Statistics of the Used Datasets

• CMU-MOSI has 2199 video segments in total,
which are sliced from 93 YouTube videos.
The videos address a large array of topics like
books, products, and movies. In these video
segments, 89 narrators show their opinions
on different topics. Most of the speakers are
around 20-30 years old. They all express
themselves in English, although they come
from different countries.

4.2 Baseline Methods
We use four recent SOTA methods for comparison
in the experiments. The methods include MMIM
(Han et al., 2021b), MISA (Hazarika et al., 2020),
Self-MM (Yu et al., 2021) and MMIN (Zhao et al.,
2021), which are summarized as follows.

† MMIM helps mutual information reach max-
imum and maintains information related to
tasks during the process of multimodal fusion,
which shows significant results in multimodal
sentiment analysis tasks.

† MISA is a novel model in emotion recognition
that represents modality more effectively and
improves the fusion process significantly.

† Self-MM has novel architecture containing
several innovative modules (like a module for
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Method Self-MM (SIMS) MMIN (IEMOCAP)

MAE Corr Acc-2 F1-Score Acc Uar F1-Score
ORIG 0.5171 0.3918 0.7291 0.6980 0.6136 0.6403 0.6049

ORIG + SPL-TRN 0.5049 0.4080 0.7392 0.7102 0.6357 0.6518 0.6235
ORIG + M3S 0.5053 0.4091 0.7405 0.7119 0.6398 0.6536 0.6296

∆ORIG ↓ 0.0118 ↑ 0.0173 ↑ 0.0114 ↑ 0.0139 ↑ 0.0262 ↑ 0.0133 ↑ 0.0247

Method MISA (MOSI) - MMIM (MOSI)

MAE Corr Acc-7 - MAE Corr Acc-7
ORIG 0.8886 0.7349 0.3863 - 0.7175 0.7883 0.4592

ORIG + SPL-TRN 0.8279 0.7355 0.4155 - 0.7126 0.7825 0.4650
ORIG + M3S 0.8393 0.7346 0.4282 - 0.7014 0.7985 0.4852

∆ORIG ↓ 0.0493 ↓ 0.0003 ↑ 0.0419 - ↓ 0.0161 ↑ 0.0102 ↑ 0.0260

Table 2: Results of four baseline models with different training methods applied. Input and test data both have
missing rates between 40% and 60%. ORIG stands for original model; SPL-TRN stands for sampling-training.
∆ORIG presents the improved performance based on original model that M3S has achieved.

label generation) and reaches brilliant results
in multimodal sentiment analysis tasks.

† MMIN handles the problem that input data
has uncertain modalities completely missing
and achieves superior results under various
missing modality conditions.

4.3 Evaluation Metrics
Following the four baseline methods mentioned
above, we use the following evaluation metrics,
including mean absolute error (MAE), Pearson
correlation (Corr), binary classification accuracy
(Acc-2), weighted F1 score (F1-Score), accuracy
score (Acc), unweighted average recall (Uar), and
seven-class classification accuracy (Acc-7). Acc-
7 denotes the ratio of predictions that are in the
correct interval among the seven intervals ranging
from -3 to 3. For all metrics, higher values show
better performance except for MAE.

4.4 Implementation Details
Hyperparameter Settings. The settings of inner
learning rate, outer learning rate and batch size
{α, β, batch_size} are as follows: MMIN {2e-4,
1e-4, 256}; MMIM {1e-3, 1e-3, 32}; MISA {1e-4,
1e-4, 128}; For Self-MM, the learning rate for three
modalities {A,V,L} is {5e-3, 5e-3, 5e-5}, and the
batch size is 32.

Feature Extraction Details. Following the base-
line methods, we adopt the extracted features as
the input for each modality. The feature extraction
methods on each modality {A,V,L} are listed as

follows: MMIN {OpenSMILE-"IS13_ComParE"
(Eyben et al., 2010), DenseNet (Huang et al.,
2017) trained on FER+ corpus (Barsoum et al.,
2016), BERT (Devlin et al., 2018)}; Self-MM,
MMIM, MISA {sLSTM (Hochreiter and Schmid-
huber, 1997), sLSTM, BERT}.

Experimental Details. We use Adam as the
optimizer for all four baseline models. The
training epoch for {MMIN, MMIM, MISA} is
{60, 40, 500}. Self-MM adopts the "early stop"
strategy to obtain the best result. Therefore, its
training epoch is unfixed. In Section 5.1, We
compare the performance of three different train-
ing methods dealing with missing modalities in
our experiment results: 1) original model’s train-
ing method (ORIG), where the missing rate of
each sample is fixed along the training process
during different epochs; 2) original model with
Sampling-Training strategy applied (ORIG + SPL-
TRN), which adopts augmented sampling without
meta-learning process, as illustrated in Section 3.2;
3) original model with M3S added on (ORIG +
M3S), which is the proposed method.

5 Results and Analysis
5.1 Main Results
Built on the baseline models, we conduct experi-
ments with the proposed M3S method and show
its effectiveness in Table 2. The missing rate is
set as the medium rate, between 40% and 60%.
Since M3S can be an add-on component to existing
methods with the capability of dealing with missing
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Input Missing Rate Method MMIN (IEMOCAP) MMIM (MOSI)

Acc Uar F1-Score MAE Corr Acc-7

60% ∼ 80%

ORIG 0.5849 0.5915 0.5748 0.7132 0.7905 0.4577
ORIG + SPL-TRN 0.5812 0.5901 0.5689 0.7268 0.7867 0.4549

ORIG + M3S 0.5900 0.6026 0.5764 0.7208 0.7890 0.4588
∆ORIG ↑ 0.0051 ↑ 0.0111 ↑ 0.0016 ↑ 0.0076 ↓ 0.0015 ↑ 0.0011

40% ∼ 60%

ORIG 0.6136 0.6403 0.6049 0.7175 0.7883 0.4592
ORIG + SPL-TRN 0.6357 0.6518 0.6235 0.7126 0.7825 0.4650

ORIG + M3S 0.6398 0.6536 0.6296 0.7014 0.7985 0.4852
∆ORIG ↑ 0.0262 ↑ 0.0133 ↑ 0.0247 ↓ 0.0161 ↑ 0.0102 ↑ 0.0260

20% ∼ 40%

ORIG 0.6192 0.6453 0.6078 0.7129 0.7893 0.4694
ORIG + SPL-TRN 0.6335 0.6513 0.6221 0.7218 0.7832 0.4665

ORIG + M3S 0.6367 0.6504 0.6266 0.7049 0.7923 0.4838
∆ORIG ↑ 0.0175 ↑ 0.0051 ↑ 0.0188 ↓ 0.0080 ↑ 0.0030 ↑ 0.0144

Table 3: Results on MMIN and MMIM under three different missing rate levels. Test data have the same range of
missing rates as input data.

(a) Valid Loss (b) Test Loss

Figure 3: Validation and testing losses of three methods along training built on the MMIM Model.

modality, we compare M3S with Sampling-Training
(SPL-TRN) and four original baseline methods.
For all the testing datasets, M3S achieves supe-
rior performance in almost all evaluation metrics
compared with the original baseline methods, as
expected. Since SPL-TRN only adopts augmented
sampling without meta-learning process, it achieves
worse performance than our M3S method in most
of the experiments. This result demonstrates that
the meta-sampling training process can better learn
the common knowledge from other modalities to
deal with the missing information. It also verifies
that meta-training can better utilize the informa-
tion from random augmentations. As a matter of
fact, with the help of M3S, MMIN model achieves
the highest Acc, highest Uar, and highest F1-Score.
Also, built upon the other three baselines (Self-MM,

MISA, MMIM), M3S helps in reaching the lowest
MAE, highest Corr, and highest Acc in most situa-
tions, which shows the efficiency and universality
of M3S.

5.2 Studies of Various Missing Rates
To verify the effectiveness of methods on differ-
ent missing rates, we conduct experiments on two
datasets by varying the input missing rate to three
levels (i.e., 20%-40%, 40%-60%, and 60%-80%).
Results in Table 3 show that for nearly all the
cases, our method M3S outperforms ORIG and
ORIG+SPL-TRN methods. Specifically, when in-
put missing rate falls within the range 40%-60%,
ORIG+M3S shows the greatest increment in all
metrics, which shows that M3S achieves the most
significant effect on models with medium missing
level.
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(a) Uar

(b) F1-Score

Figure 4: Uar and F1-Score of three methods along
training built on the MMIN Model.

5.3 Convergence Comparison
As is shown in Figure 3(a) and 3(b), we plot the
process of MMIM model’s loss decline. It is clearly
shown in plots that M3S helps original model con-
verge to the lowest loss after 10 to 15 epochs of
training. As shown in Figure 4(a) and Figure
4(b), we also select MMIN model and plot its con-
vergence process because the trend of its metrics
changes more obviously. These two figures, along
with Figure 1 show the characteristic of our method:
although M3S does not show strong competitive-
ness in the first few epochs, with the progress of
training, M3S helps model achieve faster growth
of various metrics and finally converge to a higher
result.

5.4 Adaptation across Different Missing Rates
In order to further discover the efficiency of our
method in helping models adapt to different missing
rates, we conduct experiments with testing rates
different from input rates. As shown in Table 4,
compared to ORIG method, we can see that M3S
significantly improves nearly all metrics by at least
1%. It is worth noticing that a large missing rate

MMIN ORIG ORIG + ORIG +
∆ORIGSPL-TRN M3S

Acc 0.6035 0.6152 0.6206 ↑ 0.0171
Uar 0.6281 0.6166 0.6140 ↓ 0.0141

F1-Score 0.5953 0.6023 0.6072 ↑ 0.0119

MMIM ORIG ORIG + ORIG +
∆ORIGSPL-TRN M3S

MAE 0.7201 0.7412 0.7025 ↓ 0.0176
Corr 0.7794 0.7695 0.7884 ↑ 0.0090
Acc-7 0.4534 0.4461 0.4825 ↑ 0.0291

Table 4: Results on MMIN (IEMOCAP) and MMIM
(MOSI), where input data have missing rates 40%-60%
and test data have missing rates 60%-80%.

(60%-80%) is adopted in the testing, and M3S
achieves much better performance than the other
two methods. For example, the Acc-7 of M3S on
MOSI dataset is over 3.6% higher than the one
of ORIG+SPL-TRN method, demonstrating the
capability of M3S when different modalities have
large missing information.

5.5 Further Discussion and Limitations
The qualitative results and ablation study above
show that M3S significantly helps baseline models
improve their performance on inputs with various
missing rates. However, when we apply M3S to
Self-MM model and conduct experiments on CMU-
MOSI dataset, we find that the results show little
difference from the original model’s result. Be-
sides, from Table 2 we know that M3S improves
Self-MM’s performance on SIMS dataset signif-
icantly. Hence we assume that this is because
Self-MM model has good adaptability to CMU-
MOSI dataset but not SIMS dataset when both
datasets have a mixture of missing across modali-
ties. Therefore, some models may show adaptivity
to certain datasets. And M3S may not significantly
improve the model’s performance on those datasets
that model is already quite adaptive to.

Also, as shown in Table 3, it’s revealed that when
inputs have a large missing rate (60%-80%), M3S
becomes limited in improving evaluation metrics.
We attribute this to the change of sampling range.
That is, when inputs have missing rates no more than
60%, we can create sufficient augmented missing
data to perform M3S. However, when inputs have
large missing rates, we can only get augmented
data with missing rates restricted to a smaller range.
Thus we get a smaller sampling range containing
large missing rate data, which makes M3S limited.

But in general, M3S method is recommended as it
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P-value of t-test Self-MM (SIMS) MMIN (IEMOCAP)

MAE Corr Acc-2 F1-Score Acc Uar F1-Score
P (T ≤ t) 0.1959 0.0384 0.0018 0.0615 0.0007 7.95E-5 0.0005

P-value of t-test MISA (MOSI) - MMIM (MOSI)

MAE Corr Acc-7 - MAE Corr Acc-7
P (T ≤ t) 0.0473 0.1873 0.0405 - 0.0277 0.1971 0.0263

Table 5: Two-tailed significance test (t-test) of M3S.

is easy to be added on different models and efficient
in improving models’ performance on multimodal
sentiment analysis tasks most of the time, especially
when input data has a medium missing rate. As
shown in Table 5, nearly all evaluation metrics’
P -value is smaller than 0.05 in the significance test,
indicating significant improvement when M3S is
applied.

6 Conclusion and Future Work

In this paper, we focus on a challenging problem,
i.e., multimodal sentiment analysis on a mixture of
missing across modalities, which was seldom stud-
ied in the past. We propose a simple yet effective
method called M3S to handle the problem. M3S
is a meta-sampling training method that follows
the MAML framework and combines the sampling
strategy for augmented transforms. M3S maintains
the advantages of meta-learning and helps SOTA
models achieve superior performance on various
missing input modalities.

In the experiments, we show that our method M3S
improves four baselines’ performance and helps
them adapt to inputs with various missing rates.
Furthermore, M3S is easy to realize in different
multimodal sentiment analysis models. In future
work, we plan to investigate how to better combine
M3S with other training methods and extend the
method to other multimodal learning tasks.

Ethical Considerations

Our proposed method aims to help improve the
performance of different SOTA methods on data
with various missing rates. All experiments we
conduct are based on the open public datasets (Sec-
tion 4.1) and pretraining baseline methods (Section
4.2). When applying our method in experiments,
there is minimal risk of privacy leakage. Further-
more, since our method is an add-on component

for different baselines, it is safe to apply it as long
as the baseline model provides adequate protection
for privacy.
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