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Abstract

Grammatical error correction (GEC) systems
are a useful tool for assessing a learner’s writ-
ing ability. These systems allow the grammat-
ical proficiency of a candidate’s text to be as-
sessed without requiring an examiner or teacher
to read the text. A simple summary of a can-
didate’s ability can be measured by the total
number of edits between the input text and the
GEC system output: the fewer the edits the
better the candidate. With advances in deep
learning, GEC systems have become increas-
ingly powerful and accurate. However, deep
learning systems are susceptible to adversar-
ial attacks, in which a small change at the in-
put can cause large, undesired changes at the
output. In the context of GEC for automated
assessment, the aim of an attack can be to de-
ceive the system into not correcting (conceal-
ing) grammatical errors to create the perception
of higher language ability. An interesting as-
pect of adversarial attacks in this scenario is
that the attack needs to be simple as it must be
applied by, for example, a learner of English.
The form of realistic attack examined in this
work is appending the same phrase to each in-
put sentence: a concatenative universal attack.
The candidate only needs to learn a single at-
tack phrase. State-of-the-art GEC systems are
found to be susceptible to this form of simple
attack, which transfers to different test sets as
well as system architectures 1.

1 Introduction

Grammatical Error Correction (GEC) systems can
form a part of automated language fluency assess-
ment: the number of edits from a candidate’s in-
put sentence to a GEC system’s grammatically
corrected output sentence is indicative of a can-
didate’s language ability, where fewer edits sug-
gest better fluency. Early GEC systems were
designed using hand-crafted rules (Naber, 2003),

1Code is available at: https://github.com/
rainavyas/gec-universal-attack

but since, data driven approaches, such as Sta-
tistical Machine Translation (Yuan and Felice,
2013), emerged. With encoder-decoder architec-
tures dominating in Neural Machine Translation,
Yuan and Briscoe (2016) used Recurrent Neural
Networks (Cho et al., 2014) to improve GEC perfor-
mance. Now state of the art GEC systems are based
on the Transformer (Vaswani et al., 2017) architec-
ture (Kaneko et al., 2020; Chen et al., 2020; Malmi
et al., 2019; Awasthi et al., 2019; Omelianchuk
et al., 2020b; Kiyono et al., 2019; Lichtarge et al.,
2020; Stahlberg and Kumar, 2020).

Despite the success of Transformer-based deep
learning systems, there is a shortcoming: Szegedy
et al. (2014) discovered that neural networks are
susceptible to adversarial attacks, where a small
change at the input can yield large, undesired
changes at the output of the model. In the GEC
setting, a candidate may seek to make a change to
their input sentence, such that the system makes
no corrections, resulting in zero edits between the
source and prediction sequences, which falsely in-
dicates perfect language fluency. Given the high-
stakes of an assessment setting, it is particularly
concerning if a candidate can engage in such mal-
practice. Hence, this work explores the susceptibil-
ity of GEC systems to adversarial attacks.

GEC systems operate on natural language in-
puts. In this domain, there are many proposed
adversarial attacks (Zhang et al., 2019), but on
the whole they are inappropriate for sequence-
to-sequence tasks, such as GEC. Ebrahimi et al.
(2018); Zou et al. (2019); Zhang et al. (2021);
Cheng et al. (2018) introduced methods for ad-
versarial attacks in sequence-to-sequence models.
These works require multiple queries of the target
system. However, a candidate cannot query a GEC
system. To solve this issue, this work uses a uni-
versal (Moosavi-Dezfooli et al., 2016) adversarial
attack. Here, the same universal attack phrase is
appended to the end of all candidates’ input sen-

https://github.com/rainavyas/gec-universal-attack
https://github.com/rainavyas/gec-universal-attack
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tences, i.e. a new candidate can simply acquire
(e.g. through purchase) a fixed universal attack
phrase to concatenate to their input and deceive
a GEC system used for automatic fluency assess-
ment. This work also considers the transferability
of a single attack phrase across different datasets
and even architectures. Further analysis is carried
out to determine the aspects of GEC systems that
cause them to be susceptible to this form of attack.

Despite advances in natural language adversarial
attacks, there has been less research on developing
defence schemes. Defence strategies can be cate-
gorized as model modification, where the model
or data is altered at training time (e.g. adversarial
training (Yoo and Qi, 2021)) or detection (Raina
and Gales, 2022), where external systems or al-
gorithms are applied to trained models to iden-
tify adversarial attacks. Model modification ap-
proaches demand re-training of models and so de-
tection approaches are preferred for deployed sys-
tems. Note that for attacks on GEC systems, detec-
tors based on grammatical (Sakaguchi et al., 2017)
and spelling (Mays et al., 1991; Islam and Inkpen,
2009) errors will fail. In this work, the most popu-
lar detection approaches: Frequency Guided Word
Substitution (Mozes et al., 2020) (shown to out-
perform Zhou et al. (2019)); perplexity (Han et al.,
2020; Minervini and Riedel, 2018) and model con-
fidence (Aldahdooh et al., 2021); are applied to
detecting adversarial attacks on GEC systems.

2 Related Work

In literature there has been limited work examin-
ing adversarial attacks for GEC systems. How-
ever, some works have explored adversarial ro-
bustness. First, Wang and Zheng (2020) perform
adversarial training to improve the performance
of their GEC system. Their adversarial training
scheme augments the training data with adversar-
ial examples, generated through the insertion of
common grammatical mistakes in grammatically
correct sentences, where the insertions are tuned
to exploit weak spots in the GEC system. Further,
Tang (2021) also seeks to increase robustness of
GEC systems in a post-training setting, through
further training on adversarial examples generated
from four different NLP adversarial attack schemes.
These adversarial attack methods again are de-
signed to fool the sequence-to-sequence GEC sys-
tem. Finally, Farkas et al. (2021) also augment the
training data with adversarial examples, but focus

on ensuring the adversarial examples mimic human
grammatical errors by introducing noise at both a
token level and embedding level.

However, the above schemes are inappropriate
for the attack setting in this work. First, the aim of
the attack in this work is to perturb grammatically
incorrect sentences to conceal grammatical errors.
Second, the existing works consider attacks specific
to each input, whereas this work considers the more
realistic setup of a universal adversarial attack.

3 Grammatical Error Correction

Grammatical Error Correction (GEC) systems per-
form a sequence-to-sequence task, where an input
word sequence, x1:T , containing grammatical er-
rors, is corrected for these errors by the system,
with parameters, θ to predict the grammatically
correct output word sequence, ŷ1:L,

ŷ1:L = argmax
y1:L

{p(y1:L|x1:T ;θ)}. (1)

To evaluate the performance of a GEC system,
it is necessary to identify the edits made by the
system and compare to the reference edits. An edit
is defined as a modification (insertion, deletion or
substitution) required on the input sequence x1:T
to make it match the target sequence, y1:L. A pop-
ular edit extraction tool is ERRANT (Bryant et al.,
2017), which uses a linguistically-enhanced align-
ment algorithm proposed by Felice and Briscoe
(2015). Edits between the input sequence, x1:T ,
and hypothesised prediction sequence ŷ1:L can be
found, ê1:P ,

ê1:P = edits(x1:T , ŷ1:L). (2)

These edits are to be compared to reference edits,

ẽ1:R = edits(x1:T , ỹ1:L), (3)

where ỹ1:L is the reference output sequence. The
precision = TP/(TP+FP) and recall = TP/(TP+
FN) can now be computed, where TP, FP and FN
are the standard definitions of true-positive, false-
positive and false-negative. As a single perfor-
mance score, F0.5 = 1.25∗prec∗rec/(0.25∗prec)+
rec) is used, giving greater weight to precision over
recall, as in GEC systems it is more important to be
correct in the hypothesised edits, ê1:P , as opposed
to identifying all reference edits, ẽ1:R.

In this work GEC systems are considered for
automated assessment. Here, the fluency score,
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Sθ(x1:T ), of a candidate is measured by the count
of edits between the input sequence, x1:T , and hy-
pothesised prediction sequence ŷ1:L, i.e.

Sθ(x1:T ) = count(ê1:P ) = P, (4)

where Sθ(x1:T ) = 0 is a perfect fluency score.
Beyond extracting edits and reporting the overall

performance of a GEC system, it is useful to cat-
egorize the error types. Inspired by Swanson and
Yamangil (2012), the ERRANT tool uses a rule-
based error type framework. Here edits are classi-
fied as either: Missing, where a token is present
in the target sequence, y1:L but not in the input
sequence, x1:T ; Replaced, where a substitution is
made; or Unnecessary, representing edits where a
token is present in the input sequence, x1:T and not
the output target sequence, y1:L.

4 GEC Adversarial Attack

A targeted adversarial attack on an input text se-
quence, x1:T aims to perturb it to generate an ad-
versarial example x′1:T ′ that ensures the output of a
classifier, F(), is t,

F(x′1:T ′) = t, s.t. H(x1:T , x
′
1:T ′) ≤ ϵ. (5)

H() is some distance metric between the origi-
nal and adversarial input sequences, ensuring the
change is imperceptible. It is not simple to define
an appropriate function H() for word sequences.
Perturbations can be measured at a character or
word level. Alternatively, the perturbation could be
measured in the vector embedding space, using for
example lp-norm based (Goodfellow et al., 2015)
metrics or cosine similarity (Carrara et al., 2019).
However, constraints in the embedding space do
not necessarily achieve imperceptibility in the orig-
inal word sequence space. This work uses a sim-
ple variant of a Levenshtein edit-based measure-
ment (Li et al., 2018) which counts the number of
changes between the original sequence, x1:T and
the adversarial sequence x′1:T ′ , where a change is
a swap/addition/deletion, and ensures it is smaller
than a maximum number of changes, N . For a
candidate planning to perturb their input sentence,
the simplest attack is concatenation, where a fixed
phrase is appended to their input (Wang and Bansal,
2018; Blohm et al., 2018; Raina et al., 2020),

x′1:T ′ = x1:T ⊕ δ1:N = x1, . . . , xT , δ1, . . . , δN

where δ1:N is a N -word adversarial attack phrase.

The aim of the adversarial attack on a GEC sys-
tem used for automated assessment, F() = Sθ()
(Equation 4), is to maximally decrease the count of
edits between the input sequence and the predicted
sequence, i.e. a candidate wants to conceal their
grammatical errors from the GEC system. A single
universal adversarial phrase, δ̂1:N is to be used for
all candidates, i.e. once this universal phrase has
been learnt from a set of J candidates, it can be
sold to other candidates. Hence, the cost function
an adversary seeks to optimise is

δ̂1:N = argmin
δ1:N∈Vk

 1

J

J∑
j=1

Sθ(x
(j)
1:T ⊕ δ1:N )

 (6)

where Vk is the set of all k length word sequences
that can be constructed from a selected language
vocabulary, V .

It is important to consider the interpretation of
imperceptibility in the automated assessment set-
ting. In many applications, measuring impercep-
tibility by counting number of added words, N ,
is inadequate as it can result in incomprehensible
phrases that can easily be identified by a human
reader. However, in this setting, there is no hu-
man reader, which demands the use of automated
systems for identifying incomprehensible phrases.
Therefore, this work includes experiments to fil-
ter for adversarial attack words that do not com-
promise the integrity of an input sentence, when
measured using a perplexity detector (introduced
as a detection mechanism in Section 5, Equation
9) based on a state of the art language model. This
ensures that an attack phrase remains imperceptible
in an automated assessment setting.

This work also investigates variations in the
punctuation a candidate can use to concatenate an
adversarial phrase to an input sentence. If ‘*’ repre-
sents the form of punctuation, then to concatenate
an adversarial phrase to the original phrase, we do:
original phrase* adversarial phrase.

5 Defence

For deployed systems, defence strategies that re-
quire re-training are undesirable. It is easier to use
detection processes to identify and flag adversar-
ial examples. This section considers how state of
the art detection approaches can be applied to uni-
versal concatenation adversarial attacks on GEC
assessment systems, described in Section 4.

All detection approaches, D(), use a selected
threshold, β to classify an input sequence, x1:T
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as adversarial or not. When D(x1:T ) > β, then
the input sequence x1:T is flagged as an adversar-
ial example. To examine the performance of the
detection process, this work uses precision-recall
curves, where precision and recall values are calcu-
lated for a sweep over the threshold β. Here, for
each value of β, the precision and recall values are
calculated (as in Section 3), with adapted defini-
tions for true-positive (number of samples correctly
classified as adversarial), false-positive (number of
samples incorrectly classified as adversarial) and
false-negative (number of samples incorrectly clas-
sified as non-adversarial). A single-value summary
is again obtained with the F0.5 score, giving greater
weighting to precision over recall, as it is more
important to be correct in accusing candidates of
mal-practice than finding all the candidates that
cheat. The threshold with the highest F0.5 score is
selected for the detector D().

The recently dominating, Frequency Guided
Word Substitution (FGWS) (Mozes et al., 2020)
algorithm is adapted for attacks on an assessment
GEC system. For the FGWS algorithm, we gen-
erate a sequence x∗1:T from the original input se-
quence, x1:T by substituting out low frequency
words for higher frequency words. Precisely, a
subset of eligible words (for substitution) is found
XE = {x ∈ x1:T |ϕ(x) < γ}, where ϕ(x) gives
frequency of word x and γ ∈ R>0 is a frequency
threshold. Then, for each eligible word x ∈ XE

a set of replacement candidates, U(x) is found
using synonyms. A replacement word x∗ is se-
lected as x∗ = argmaxw∈U(x) ϕ(w). Hence, x∗1:T
is generated by replacing each word x in x1:T if
ϕ(x∗) > ϕ(x). For the GEC assessment system,
Sθ(), defined in Equation 4, the FGWS detection
score is,

DFGWS(x1:T ) =
1

T
(Sθ(x1:T )− Sθ(x

∗
1:T )) . (7)

Smith and Gal (2018) describe the use of uncer-
tainty for adversarial attack detection, where ad-
versarial samples are thought to result in greater
epistemic uncertainty. In this work, negative con-
fidence is selected as a simple measure of uncer-
tainty. It is easiest to measure the confidence using
the grammatically correct sequence output by the
GEC system, ŷ1:L (Equation 1). The negative con-
fidence detector score is calculated as,

Dnc(x1:T ) = − 1

L
log(p(ŷ1:L|x1:T )). (8)

This works also explores the positive confidence
detector, Dpc(x1:T ) = −Dnc(x1:T ). A final pop-
ular NLP detection approach is to consider the
perplexity (Minervini and Riedel, 2018) of the in-
put sequence. It is expected that adversarial se-
quences have a greater perplexity than original sam-
ples. The perplexity detector, using some language
model (LM), can be defined as,

Dp(x1:T ) = − 1

T
log(pLM(x1:T )). (9)

6 Experiments

6.1 Setup
Training of systems in this work uses a range of
different popular grammatical error correction cor-
pora. Cambridge Learner Corpus (CLC) (Open-
CLC, 2019) is made up of written examinations for
general and business English of candidates from
86 different mother tongues. Grammatical errors
are annotated and this is used to generate reference
sentences for GEC training. Cambridge English
Write & Improve (WI) (Yannakoudakis et al.,
2018) is an online web platform that assists non-
native English students with their writing. Specif-
ically, students submit letters, stories and essays
in response to various prompts, and the WI sys-
tem provides instant feedback. LOCNESS cor-
pus (Granger, 2014) is a collection of 400 essays
written by British and American undergraduates.

Evaluation of systems is performed on three dif-
ferent test sets. First Certificate in English (FCE)
corpus (Yannakoudakis et al., 2011) is a subset of
CLC, consisting of 33,673 sentences split into test
and training sets of 2,720 and 30,953 sentences
respectively. Building Education Applications
2019 (BEA-19) (Bryant et al., 2019) offers a test
set of 4477 sentences, sourced from essays written
by native and non-native English students2. Con-
ference on Computational Natural Language
Learning 2014 (CoNLL-14) (Ng et al., 2014) test
set consists of 1312 sentences sourced from 50
essays written by 25 non-native English speakers.

In recent years, Grammatical Error Correc-
tion systems have been dominated by large (up
to 11B parameters) Transformer based architec-
tures (Rothe et al., 2021; Stahlberg and Kumar,
2021). Using the F0.5 metric defined in Section
3, Table 1 compares the performance of two pop-
ular Transformer-based architectures: the Gram-

2Evaluation: https://competitions.codalab.
org/competitions/20228.

https://competitions.codalab.org/competitions/20228
https://competitions.codalab.org/competitions/20228
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former (Damodaran, 2022) (223M parameters), a
T5-based (Raffel et al., 2019) sequence to sequence
system3 and Grammarly’s Gector (Omelianchuk
et al., 2020a), using specifically the Roberta-based
architecture (Liu et al., 2019) (123M parameters)4.
The Gramformer is pre-trained on the WikEd Er-
ror Corpus (Grundkiewicz and Junczys-Dowmunt,
2014), and in this work, it is further fine-tuned
on the CLC (with FCE-test set removed), WI and
LOCNESS datasets. The finetuning uses Adam op-
timiser with a batch size of 256 and a learning rate
of 5e-4 with warm up. Maximum sentence length
is set at 64 and the final model parameters are aver-
aged over 5 best checkpoints. As the Gramformer
model was initialised from a large pre-trained sys-
tem, changing seed for the finetuning gave little
diversity in the ensemble.

Table 1 shows that the Gramformer and Gector
systems have a similar performance on the FCE
test set, but the Gector system significantly out
performs the Gramformer on the CoNLL-14 and
BEA-19 test sets. Nevertheless, to mimic a realistic
adversarial attack setting, the more easily available
Gramformer system5 is used as an initial model
(adversary can access) for learning universal at-
tacks and the best attacks are then transferred for
evaluation on the target Gector system in Section
6.4.

Model Precision Recall F0.5

FCE Gramformer 51.6 43.7 49.8
Gector 53.5 39.3 49.9

CoNLL-14 Gramformer 49.3 34.1 45.2
Gector 62.0 42.6 56.8

BEA-19 Gramformer 35.3 44.6 37.1
Gector 70.2 61.2 68.2

Table 1: GEC systems F0.5 scores.

6.2 Attack Results

Greedy universal concatenation adversarial attacks
were performed on the Gramformer system as de-
scribed in Equation 6. As described in Section 4,
different punctuation types were considered for the
concatenation of the universal attacks. The impact
of each attack phrase is presented for each of the
three different GEC test sets in Figure 1, with N

3Gramformer model: https://github.com/
PrithivirajDamodaran/Gramformer

4Gector models: https://github.com/
grammarly/gector

5Stars on Github: Gramformer (1,110); Gector (611).

being the number of universal adversarial words at
the end of each input sentence. The universal attack
phrases were learnt on the FCE training split6.

The metric used to measure the success of the
attack is the fraction of samples with zero edits
from source to GEC prediction sequence. The ran-
dom attacks shown use a full-stop for concatenat-
ing randomly sampled words. A direct attack is
where no punctuation is used to separate the origi-
nal and the attack phrase. With percent increases
between 20% and 50% in the fraction of samples
with no edits shows that the GEC system is threat-
ened somewhat by the direct, colon and comma
attacks. However, for the full-stop universal adver-
sarial attack sequence, with even a N = 4 word
attack, the number of samples with zero edits in-
creases by almost 40% for the FCE test set and
more than 100% for the CoNLL-14 and BEA test
set. It is evident that the GEC system is suscepti-
ble to even a simple form of universal attack. The
greater susceptibility to the full-stop attack can be
explained to some extent by the nature of the data
used to fine-tune the Gramformer GEC system. Ta-
ble 2 shows the frequency count of the different
punctuation marks in the training set (CLC, WI and
LOCNESS datasets), where the full-stops present
at the end of sentences are not included 7. Note
that there are a total of ∼3M input samples in the
training dataset. The count of full-stops is far less
than that of commas, meaning the GEC system is
not as familiar with multi-sentence inputs allow-
ing for greater susceptibility to attacks using the
full-stop. However, this count-based explanation
is inadequate to justify the less successful colon
concatenation attack. Nevertheless, the lack of sus-
ceptibility to colon concatenation can be explained
- in the training samples with colons, more than
50% samples have the colon followed by a list de-
limited with semi-colons. This means that the GEC
system easily learns this fixed colon usage, which
makes it difficult to have a successful colon-based
universal concatenation attack format. Due to the
potency of the full-stop concatenation attack, the
remainder of the analysis in this section focuses on
the full-stop attack 8. Examples of the impact of

6Note that the same universal attack phrase is evaluated
on the different datasets.

7For the full-stop concatenative attack we are interested in
the count of the number of instances where there is a multi-
sentence input to best represent the format of the attack.

8Equivalent analysis (in Appendix B) for the comma, colon
and direct attack formats gave the same trends as the analysis
presented for the full-stop attack format.

https://github.com/PrithivirajDamodaran/Gramformer
https://github.com/PrithivirajDamodaran/Gramformer
https://github.com/grammarly/gector
https://github.com/grammarly/gector
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(a) FCE (b) CONLL-14 (c) BEA 2019

Figure 1: Evaluation of Universal Attacks, length N , on GEC system with concatenation punctuation.

the universal attack are given in Table B.1.

Punctuation Count

Full-stop 214,064
Comma 1,790,282
Colon 97,964

Table 2: Count of punctuation in training set. Excludes
punctuation at end of inputs.

Table 3 shows the impact of the N = 4 con-
catenation adversarial attack on the performance
of the GEC system on the FCE test set. The ad-
versarial phrase is stripped from the output pre-
dicted sequence to discount the introduction of
false-positive edits in the adversarial part of the
input. As expected the F0.5 score worsens due to
the drop in the recall, i.e. the GEC systems strug-
gles to find the grammatical errors with the attack
phrase concatenated at the end of the sentence - the
attack is successful in concealing the errors present
in the sentence.

Input Precision Recall F0.5

Original 51.6 43.7 49.8
Attacked 51.3 30.7 45.2

Table 3: Gramformer F0.5 score.

6.3 Detection Evasion

Although the Gramformer GEC system is suscepti-
ble to a universal attack, it can be defended using
detection methods. Figure 2 compares the success
of detectors from Section 5 when attempting to dis-
tinguish adversarial samples from original samples
(on FCE test). The threshold for each detector is
selected such that it gives the best F0.5 score. Re-
sults are presented for original FCE test samples
with and without the full-stop universal adversarial
phrase appended to the end of the samples. It is
interesting to note that FGWS, although successful

Figure 2: Adversarial attack detection using F0.5 score
to distinguish between original and adversarial samples.

in other NLP adversarial attack tasks, has little suc-
cess here. This is perhaps expected as the FGWS
vocabulary is now trained with grammatically in-
correct sentences containing mis-spellings. Further,
the FGWS algorithm is tuned to word substitution
attacks, meaning it is less appropriate for the con-
catenation setting here. The perplexity score is
calculated using a pre-trained distilled GPT-2 lan-
guage model (Radford et al., 2019) applied to the
input sequence. Perplexity has some success here
in detecting adversarial samples, but the success is
limited because many original input sequences are
grammatically incorrect and thus naturally have an
inflated perplexity score, meaning it is easy for the
detector to mistake them for adversarial samples.

Interestingly, negative confidence has no suc-
cess in detection here, whilst positive confidence
dominates as the best detection approach. This is
surprising because one would expect adversarial
samples to cause systems to be less confident in
their predictions, as the system is operating in a less
well understood input space. Nevertheless, superior
performance of positive confidence is explainable.
GEC systems are trained on data where the tokens
present in the input are also present in the refer-
ence, meaning in most cases there is a strong bias
towards simply predicting tokens that are present
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(a) FCE (b) CONLL-14 (c) BEA 2019

Figure 3: Evaluation of detector evasion adversarial attacks.

in the input sequence. When an obscure adversarial
word is present in the input sequence, the GEC sys-
tem at prediction time naturally has a much larger
probability mass associated with this obscure word,
i.e. it is excessively confident in predicting it.

An adversary may have knowledge of the power-
ful detectors used here and would tailor the adver-
sarial attack to avoid detection. Figure 3 shows the
impact of the greedy attack approach modified to
evade detection from the confidence detector and
the perplexity detector (detector thresholds set to
the value corresponding to the F0.5 score in Figure
2) 9. The attack phrases are learnt on the FCE train
set and evaluated on the FCE, CoNLL-14 and BEA
test sets. It is interesting to note that the confidence
detection evading attack phrases are only slightly
less effective than the original attack phrases - the
fraction of zero edits saturate at around 0.50 as
opposed to 0.56 (on FCE test set). However, con-
sidering the attack to evade the perplexity detec-
tor, the potency of this universal phrase is surpris-
ingly greater than the original greedy attack phrase
learnt (for all datasets). This suggests that con-
straining an attack to more human phrases (as mea-
sured by perplexity of a powerful GPT-2 language
model), allows for even stronger adversarial attacks.
These phrases are considered particularly threaten-
ing as their similarity to natural language allows for
greater imperceptibility to human observers (not
just automated detection systems).

6.4 Transfer Attack

The aim of this section is to investigate the impact
of transferring an attack learnt for an initial system
(Gramformer) to a target system (Gector).

Concatenation universal adversarial attacks on
the Gramformer system are found to be most power-
ful when the adversary greedily generates a phrase

9A adversarial word is accepted if the average confi-
dence/perplexity is less than the detector threshold.

that evades a perplexity detector, as demonstrated
in Figure 3. Hence, this universal adversarial
phrase is simply evaluated on the Gector system.
The results in Table 4 show that this transferred uni-
versal adversarial phrase has some level of threat:
across all test sets, this universal adversarial phrase
is able to increase the fraction of samples with no
edits by at the least 10%. Table 4 also gives the
impact of learning a universal attack phrase (using
FCE train dataset and also avoiding a perplexity
detector as in Section 5) for the Gector system. In-
terestingly, the direct attack is only around twice as
effective as the transferred attack. This highlights
the potency of these forms of adversarial attacks:
the same adversarial phrase can transfer to different
unseen, GEC systems.

Data Attack N = 0 N = 9

FCE Transfer 0.44 0.50
Direct 0.44 0.55

CoNLL-14 Transfer 0.33 0.38
Direct 0.33 0.41

BEA-19 Transfer 0.45 0.50
Direct 0.45 0.54

Table 4: Fraction of samples with zero edits, attack on
Gector.

6.5 Analysis
This section carries out a more in-depth analysis
to understand the aspects of the GEC systems ex-
ploited by adversarial attacks. The analysis pre-
sented here is for the concatenative full-stop attack
learnt for the Gramformer system.

We want to analyse the nature of the attack -
precisely which type of edits is the adversarial at-
tack phrase targeting. If for a dataset of J input-
reference sentence pairs, there exist a total R ref-
erence edits, ẽ1:R (Equation 3) and P hypothesis
edits, ê1:P (Equation 2), then the performance due
to the GEC system correctly hypothesising edits
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can be measured by the correction rate, cor and
the failure measured by the insertion rate, ins,

cor =
1

R

P∑
p=1

1
{ẽ1:R}

êp, ins =
1

R

P∑
p=1

1
{ẽ1:R}∁

êp,

where {ẽ1:R}∁ gives the complement set. Sec-
tion 3 classifies an edit as Missing, Replaced or
Unnecessary. Figure 4 shows how the correction
and insertion rates change (on FCE test) for each
of these edits classes separately. Note that there are
a total of R = 919, R = 2954 and R = 596 refer-
ence edits for Missing, Replaced and Unnecessary
classes respectively.

(a) Correct Edits

(b) Inserted Edits

Figure 4: Edit rates by edit type class.

The edit classes (M, R and U) all undergo a sim-
ilar drop in correction rate with an increasingly
powerful adversarial attack. However, Figure 4b
demonstrates that smaller N adversarial attacks
struggle to reduce Unnecessary inserted edits more
than other edit type classes. Only when the re-
ductions from removing Missing and Replaced
inserted edit types have saturated, does increas-
ing N reduce the Unnecessary inserted edit types.
The flattening of the performance curve (fraction
of samples with zero edits) suggests that this re-
duction in inserted Unnecessary edits has little
benefit to the adversarial attack. The apparent
robustness of Unnecessary inserted edits can per-
haps be explained simply. An inserted edit is the

creation of an edit, ê, by the GEC system that is
not present in the reference edits, ẽ1:R. When
a GEC system creates specifically Unnecessary
edits it means a token present in the input se-
quence is not present in the output prediction se-
quence. A well trained GEC system will remove
the adversarial phrase appended to the input se-
quence, creating an Unnecessary edit, ê, which
does not exist in the reference edits, ẽ1:R - it is
an inserted edit. Hence, there is an artificial in-
crease in inserted Unnecessary edits. Edits in the
adversarial phrase only contribute to 4% of to-
tal edits on average (analysis presented in Figure
A.1), where 91% of the adversarial phrase edits
are Unnecessary edit types. This gives on average
an increase in the inserted Unnecessary edit rate
by 10% (0.04 ∗ 0.91 ∗ count(ê1:P )/596), where
596 is the count of Unnecessary reference edits.
This increase of 10% explains the shift between
the Replaced and Unnecessary curves in Figure
4b. Hence, all edit types in an input sequence are
susceptible to the simple universal attack.

7 Conclusions

Grammatical Error Correction (GEC) systems can
contribute to automated fluency assessment. The
count of edits between a candidate’s input and the
grammatically correct output sequence from the
GEC system, is a measure of the candidate’s ability
in the language: fewer the number of edits, the
better the candidate. However, this work showed
that deep learning based GEC systems are suscep-
tible to adversarial attacks, where a candidate can
cheat by adjusting their input sentence such that
the predicted sequence from the GEC system does
not correct the existing grammatical errors.

To model a realistic adversarial attack setting,
this work restricts itself to a blackbox, universal
attack approach, where the same adversarial phrase
is appended to the end of all candidates’ input se-
quences. This setting is particularly threatening
because a candidate can cheat without querying
the GEC system even once - the candidate only
has to acquire the attack phrase. It is found that
the same universal attack phrase can be effective
across multiple datasets and more interestingly can
be transferred to deceive new, unseen architectures.
This demonstrates that all GEC systems have a
worrying susceptibility to even the simplest attack
forms.
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8 Limitations

This work identified methods to adversarially attack
state of the art GEC systems. Defence strategies in
the form of detection were also considered. How-
ever, there has been less focus on adversarial train-
ing to improve robustness of systems. Although
adversarial training is not an option available to
deployed GEC systems, future work in this area
would be useful in understanding the increase in ro-
bustness from adversarial training to the universal
attack form considered in this work.

9 Risks and Ethics

Adversarial attacks, by nature, are of ethical con-
cern in high stakes’ environments. The approaches
proposed in this work can be used to inspire candi-
dates to engage in mal-practice in an education set-
ting. However, this is of little concern because the
development of attacks requires significant know-
how of the GEC assessment process, which candi-
dates are unlikely to have.
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A More Analysis

It is perhaps surprising to observe a reduction in
the number of edits made by a GEC system, when
a potentially grammatically incorrect adversarial
phrase is concatenated at the end of each input.
To investigate this, Figure A.1 presents the split
in the number of edits; i.e. on average how many
edits are found in the original part of the input
and the concatenated adversarial part of an input
separately (using the full-stop concatenation attack
on the Gramformer evaluated on the FCE test set).
The adversarial phrase appears to have a length
independent small contribution to the total number
of edits, whilst the larger reduction in the number
of original part edits allows for an overall decrease
in the total edits.

Figure A.1: Average edit count split between original
and adversarial parts of inputs.
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B Examples and More Results

Input I have received your letter, which was about that you would like me to inform you. ink.
Pred I have received your letter, which was about what you would like me to inform you about.
Adv Pred I have received your letter, which was about what you would like me to inform you. ink.

Input When I was a child I always wanted to get the lyrics of the songs that I liked, but it was nearly
impossible to have them. ink.

Pred When I was a child I always wanted to get the lyrics of the songs that I liked, but it was nearly
impossible to get them.

Adv Pred When I was a child I always wanted to get the lyrics of the songs that I liked, but it was nearly
impossible to have them. ink.

Input As you know, it is not suitable to wear a jean or something. ink.
Pred As you know, it is not fashionable to wear jeans or something.
Adv Pred As you know, it is not suitable to wear jeans or something. ink.

Table B.1: Examples of GEC prediction sequences with and without universal adversarial sequence concatenated to
input.

(a) Comma (b) Direct (c) Colon

Figure B.1: Average edit count split between original and adversarial parts of inputs for each type of punctuation
attack (on FCE test) for the Gramformer.
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(a) Comma corr (b) Comma ins

(c) Direct corr (d) Direct ins

(e) Colon corr (f) Colon ins

Figure B.2: Edit rates by edit type class for each type of punctuation attack (on FCE test) for the Gramformer.


