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Abstract

With a knowledge graph and a set of if-
then rules, can we reason about the conclu-
sions given a set of observations? In this
work, we formalize this question as the cog-
nitive inference problem, and introduce the
Cognitive Knowledge Graph (CogKG) that
unifies two representations of heterogeneous
symbolic knowledge: expert rules and rela-
tional facts. We propose a general frame-
work in which the unified knowledge repre-
sentations can perform both learning and rea-
soning. Specifically, we implement the above
framework in two settings, depending on the
availability of labeled data. When no labeled
data are available for training, the framework
can directly utilize symbolic knowledge as the
decision basis and perform reasoning. When
labeled data become available, the framework
casts symbolic knowledge as a trainable neu-
ral architecture and optimizes the connection
weights among neurons through gradient de-
scent. Empirical study on two clinical diag-
nosis benchmarks demonstrates the superior-
ity of the proposed method over time-tested
knowledge-driven and data-driven methods,
showing the great potential of the proposed
method in unifying heterogeneous symbolic
knowledge, i.e., expert rules and relational
facts, as the substrate of machine learning and
reasoning models. The source code and data
are released online1.

1 Introduction

Symbolic reasoning methods such as rule-based
expert systems (Buchanan and Shortliffe, 1984)
are reliable and interpretable in solving complex
inference problems in specialized domains, but
are also difficult to generalize because eliciting
a comprehensive set of rules from human experts is
costly and time-consuming. Recently, knowledge
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1http://github.com/jinnanli/CogKG
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Figure 1: Illustration of impacts of training exam-
ples on different reasoning paradigms (with fixed prior
knowledge). Note that the curves start w/o pre-training.

graph (KG) as a flexible representation of sym-
bolic knowledge has been proven successful for
knowledge-based reasoning (Bordes et al., 2013)
by utilizing the distributed representations to gen-
eralize from known facts to unseen yet probably
true facts, which is also known as the knowledge
graph completion task (Lin et al., 2015). How-
ever, such models can only represent and reason
about multi-relational data in the form of (subject,
predicate, object) triples (Liben-Nowell and Klein-
berg, 2003), not conditional if-then rules. There-
fore, current knowledge graph embedding models
are not suited to solve inference problems where
conclusions (outcomes) can be inferred from a set
of observations.

This current work is motivated by one overarch-
ing question: can we unify the representation of
above heterogeneous symbolic knowledge to per-
form complex inference tasks? More concretely,
we study the following research question. With
a large-scale KG with rich relational facts and a
moderate set of if-then rules as the prior knowl-
edge, can we reason about the most likely conclu-
sion(s) given a set of observations? With the rapid
development of knowledge graph, the knowledge
acquisition bottleneck (Muggleton and De Raedt,
1994) is greatly alleviated, making it much more
practicable to jointly utilize the knowledge and data
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for learning systems in today than in the past. Re-
cent studies have shown great success in integrating
the knowledge into data-driven models, and such
hybrid learning system normally achieves more fa-
vorable performance than traditional methods, as
presented in Fig. 1. However, there is a general ab-
sence of sufficient labeled data in some high-stake
scenarios such as medical diagnosis. Moreover,
such critical domains’ inherent nature strictly man-
dates the models to be trustworthy and interpretable.
These high-demanding characteristics directly chal-
lenge existing vulnerable knowledge-driven meth-
ods and data-hungry machine learning methods,
and the solution still remains underexplored2 (von
Rueden et al., 2021).

In this work, we formalize the above challenge
as the cognitive inference problem and introduce
three design goals for the model to address this
problem: 1) The ability to extensively inherit exist-
ing symbolic knowledge. The model is expected to
leverage not only if-then rules, but also large num-
ber of facts in knowledge graphs. 2) The ability
to directly utilize existing symbolic knowledge in
the reasoning procedure. This allows the model to
make decent predictions based on prior knowledge,
even when it is not trained. Moreover, it makes the
model’s reasoning process interpretable. 3) The
ability to be continuously optimized when train-
ing data is available. This enables the model to
improve like any machine learning models. More
importantly, it ensures the model’s robustness so
that it adapts to the nuances of real-world data that
are not encoded in prior symbolic knowledge.

To achieve the above goals, we first introduce
the cognitive knowledge graph (CogKG), which
represents relational facts and expert rules in a
unified framework. Specifically, it is a directed
hypergraph with entities as nodes, and the rela-
tions or expert rules as edges. Then, we propose
a novel inference framework called COGINFER

that bridges the knowledge-driven and data-driven
reasoning paradigms, which not only utilize ex-
plicit knowledge representations but also harvest
knowledge from training examples if applicable.
More precisely, it performs reasoning with sym-
bolic knowledge, and the reasoning process could
be further optimized with labeled data towards bet-
ter performance. In this way, we aim to combine
the symbolic reasoning and statistical learning in
the same general framework COGINFER, which

2See detailed discussion in Appendix A.

make our method achieve the design goals as stated
above and stand out from existing works.

To make fair comparisons with existing
knowledge-driven and data-driven baselines, we
investigate the cognitive inference problem under
both unsupervised and supervised settings. Exten-
sive experiments on two clinical diagnosis bench-
marks show that the COGINFER successfully learns
from both symbolic knowledge and labeled data
to address the proposed new inference task, sub-
stantially surpassing strong data-driven baselines.
Even without any training examples, it still out-
performs existing knowledge-driven baselines that
only harvests either expert rules or knowledge
graph, demonstrating the great potential of the pro-
posed framework. The main contributions of this
work are three-fold:

• We introduce a novel cognitive inference prob-
lem that reasons about conclusions from ob-
servations, which directly challenges existing
methods.

• In light of this challenge, we first introduce
the cognitive knowledge graph (CogKG) that
represents expert rules and relational facts in
a unified manner, and then develop a general
framework that bridges the knowledge-driven
and data-driven reasoning paradigm.

• Extensive experiments demonstrate the effec-
tiveness of the proposed method in utilizing
unified symbolic knowledge and labeled data
for machine learning and reasoning.

2 The Cognitive Inference Problem

2.1 Problem Formulation
We first introduce our notations. A knowledge
graph (KG) consists of relational facts F =
{(si, pi, oi)}Ni=1, where (si, pi, oi) is a relational
triple consisting of subject entity si, predicate pi,
and object entity oi. The vertex set of the KG
is V = ∪Ni=1{si, oi} and its edge set is Ee =
∪Ni=1{pi}. The collection of expert rules is de-
noted asR = {Ai

ri−→ Bi}Mi=1, where Ai
ri−→ Bi is

a rule that expresses “if Ai are observed then Bi

are true”. Ai, Bi ⊂ V are small sets of entities and
ri is a hyperedge that connects two sets of entities.
The hyperedge set is denoted as Er = ∪Mi=1{ri}.
Labeled dataL = {(Qi, Ci)}Li=1 is a collection of
query-conclusion pairs. Qi, Ci ⊂ V are small sets
of entities. In machine learning terms, the query
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Table 1: Important notations and descriptions.

Notations Descriptions

F Relational facts
R Expert rules
L Labeled data
G CogKG, G = (V,E)
V Entities
E Edges, E = {Ee, Er}
Ee Relation edges
Er Rule hyperedges
Q A query, a small set of entities
C A conclusion, a small set of entities
GQ InferGraph of query Q, GQ ⊂ G
E Distributed representations of relational facts
P Rule-generated neuron matrix
U KG-generated neuron matrix
X Final input neuron matrix
W Weight matrix before output neurons

Qi are input features and the conclusion Ci are pre-
diction targets. In this work, we instead use “query”
and “conclusion” to emphasize the inference nature
of our problem.

The cognitive inference problem is to infer the
conclusion C ∈ V for a given query Q ∈ V . The
inference is unsupervised if it only makes use of
the knowledge graph F and expert rules R; it is
supervised if it also makes use of the label data L.

2.2 Task Preliminaries

As the cognitive inference problem involves utiliz-
ing different resources for learning and reasoning,
we assume each of them has been properly prepared
before the task begins, as detailed below.

(1) Knowledge Graph. We assume access
to a large-scale knowledge graph relevant to the
problem domain. It is typically represented in
the form of (subject, predicate, object) triples (Ji
et al., 2021). These relational facts can be man-
ually collected or automatically extracted from
texts though natural language processing technolo-
gies such as named entity recognition (Yadav and
Bethard, 2018; Yang et al., 2020) and relation clas-
sification (Yu et al., 2020; Han et al., 2020).

(2) Expert Rules. We assume access to a set of
if-then rules encoding the expert knowledge of the
problem domain. They are conditional statements
which posit that a conclusion is true if the premises
are satisfied by the input observations. It can be
elicited from experts with domain knowledge. It
can also be learned from domain data via machine
learning and data mining (e.g., structure learn-
ing (Khosravi et al., 2010), decision tree (Quinlan,
1987), association rule mining (Han et al., 2000)).

(3) Labeled Data. Labeled data contains in-
stances of queries and their corresponding conclu-
sions in the problem domain. In this work, we
consider the domain of medical diagnosis. Each
piece of labeled data is a diagnosis record, where a
query is a set of observed symptoms and a conclu-
sion is a diagnosed disease. Labeled data are used
for training (in supervised setting) and evaluation
(in both supervised and unsupervised settings).

(4) Entity Alignment. The above resources may
use different surface forms to refer to the same en-
tity. It is crucial to align different surface forms
using the same entity in the KG. This procedure
can be done manually or assisted with entity dis-
ambiguation tools (Dredze et al., 2010).

3 Proposed Methods

3.1 Cognitive Knowledge Graph

To solve the above cognitive inference problem,
we first introduce the Cognitive Knowledge Graph
(CogKG), which unifies the representation of re-
lational facts and expert rules, and then develop
a general reasoning framework based on it. As
presented in Fig. 2, the CogKG is a directed hyper-
graph with entities as nodes, and the relations or
rules as edges. In this case, the relation edge con-
nects two entities and then forms a relational fact.
In contrast, the rule hyperedge connects two sets of
entities and then form a expert rule. We denote the
cognitive knowledge graph as G = (V,E), where
V is the entity set and E = {Ee, Er}. In particu-
lar, the relation edges and rule hyperedges are Ee

and Er, respectively. The important notations and
descriptions are in Table 1.

3.2 The General COGINFER Framework

With rich cognitive knowledge of expert rules and
relational facts, we propose COGINFER, a general
framework performing machine reasoning based
on the CogKG. As presented in Alg. 1, the reason-
ing procedure for the cognitive inference problem
includes three steps. Firstly, we perform knowl-
edge representation learning on the relational facts
of CogKG G and obtain the distributed represen-
tations of involved nodes and relational edges,
i.e., E = RepreLearn(V,Ee).3 Secondly, a
task-specific InferGraph GQ is constructed from
G, which identifies the inference space for query

3This can be done by any knowledge graph embedding
methods (Ji et al., 2021). Here we adopt the widely used
TransE (Bordes et al., 2013) as a typical technique.
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Figure 2: The general COGINFER framework. The
query and conclusion are both aligned to CogKG.

Algorithm 1 COGINFER

Require: G = (V,E), Q = {v1, ..., vi..., vL|vi ∈
V }

1: Learn embeddings E for nodes and edges of G
2: Create GQ from G w.r.t. query Q . Alg. 2
3: Perform inference based on GQ and E .

Sec. 3.3 / Sec. 3.4
4: return conclusion C

Algorithm 2 InferGraph Construction

Require: G, Q
1: Initialization: add entities in Q as nodes to GQ,
Er

mem = ∅
2: assign Vcur with nodes in GQ
3: Er

cur = GetLinkedRuleEdges(G, Vcur)
4: while Er

cur − Er
mem is not empty do

5: for each eri ∈ Er
cur − Er

mem do
6: Vi = GetLinkedEntNodes(G, eri )
7: add rule eri and nodes Vi to GQ

8: expand Er
mem with Er

cur

9: assign Vcur with nodes in GQ
10: Er

cur = GetLinkedRuleEdges(G, Vcur)
11: return InferGraph GQ

Q. Lastly, the COGINFER checks every possible
conclusion delivered in the inference space by rea-
soning with curated rules in GQ and the distributed
representations E . Specifically, it performs unsu-
pervised inference (Section 3.3) or supervised infer-
ence (Section 3.4) depending on the availability of
labeled data. The general COGINFER framework
is presented in Fig. 2.

For each query Q = {v1, ..., vi..., vL|vi ∈ V },

Algorithm 3 Unsupervised Inference

Require: GQ, Q, E
1: Initialization: add rules in GQ toEr

mem,C = ∅
2: assign Vknw with entities in Q
3: repeat
4: assign Vmem with Vknw
5: for each eri ∈ Er

mem do
6: for each vu in premise do
7: LinkPrediction(vu, Vknw, E)
8: expand C with ApplyRule(eri , Vknw)
9: expand Vknw with C

10: until Vknw − Vmem is empty
11: return C

we create a task-specific InferGraph GQ by itera-
tively identifying the closure of the involved rules
and connected entities from the task-free back-
ground CogKG G. The construction of InferGraph
is detailed in Alg. 2. When expanding the rules, we
only consider those where the premise requires at
least one registered entity of the closure.

Specifically, GetLinkedRuleEdges(G, V )
returns a set of rules of CogKG G in which
the entity set in premise overlaps with V .
GetLinkedEntNodes(G, er) returns a set of en-
tity nodes of G that are linked with the rule er, i.e,
those entities in premise and conclusion of this rule.
In other words, GQ ⊂ G is a small sub-graph of the
background CogKG. The entity nodes in this graph
are particularly categorized into two sets, namely,
Known Entity set and Unknown Entity set, repre-
senting the status of certainty. We use certainty
factor (CF) (Buchanan and Shortliffe, 1984) to
manage the uncertainty of the nodes carried out in
the ensuing reasoning steps. Specifically, a CF of
0 represents unknown. Positive and negative CFs
represent True and False values respectively, with
increasing confidence as the number approaches 1
or −1. In our case, this CF is used to indicate the
confidence in the presence or absence of symptoms
or diseases. The logical AND and OR operations
on two CFs a, b are defined as follows:

AND(a, b) = min(a, b) , (1)

OR(a, b) =


a+ b− ab, if a, b ≥ 0;
a+ b+ ab, if a, b < 0;

a+b
1−min(|a|,|b|) , otherwise.

(2)
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3.3 Unsupervised Inference
In unsupervised inference, we conduct reasoning
over the InferGraph by applying expert rules or
link prediction with the learned distributed rep-
resentations, i.e., to deduce the CF of unknown
entities given a set of rules and known entities.
As presented in Alg. 3, for each rule in the Infer-
Graph, we check if the Known Entity set satisfy
the corresponding premises. If satisfied, then we
can apply this rule and deduce a new non-zero
CF for the unknown entity and remove it from
the Unknown Entity set. Otherwise, we check if
there is any unknown entity in the premise could
be deduced through link prediction. Formally,
LinkPrediction takes as input the concerned un-
known entity vu, current known entity set Vknw, the
learned embeddings E , and outputs the CF of vu.
Let |Ee| denote the pre-defined predicate set in
Ee. Each known entity vi ∈ Vknw along with vu
forms a candidate triple (vi, pj , vu) under a certain
predicate pj ∈ |Ee|. The cosine similarity between
(~vi + ~pj) and ~vu is used to represent the CF given
by such triple4:

CFij = CosSim(~vi + ~pj , ~vu) (3)

Particularly, the CF will be reset to 0 if the calcu-
lated result does not surpasses a preset threshold.
By applying the OR operation over CFs carried by
all such triples, the CF of the target unknown en-
tity vu is determined. ApplyRule takes as input
the concerned rule er and current known entity set
Vknw. If the rule is applicable, i.e., the premise
is satisfied by the Vknw, we will apply the AND
operation over CFs of all premise entities followed
by multiplication with CF of the rule itself to de-
termine the CF of conclusion entity led by the rule.
We repeat the above procedure and record every
conclusion until no more entity could be deduced.

3.4 Supervised Inference
So far, we have presented how the COGINFER per-
forms unsupervised machine reasoning with cogni-
tive knowledge of relational facts and if-then rules
while without any labeled training data. With the
same architectural backbone, it can be easily ex-
tended to a trainable supervised model and collec-
tively learn from the knowledge and labeled data.
To keep the explainability of COGINFER, we imple-
ment it as a simple neural network with only one

4In this work, we use arrowheaded letter to represent the
corresponding vector in E .

Figure 3: The trainable implementation of COGINFER.

fully connected layer between the input and output
neurons, as presented in Fig. 3.

In this section, we present how the cognitive
knowledge of if-then rules and relational facts are
utilized to generate explainable neurons5 as part of
the model and elaborate on the instantiation of the
trainable implementation of COGINFER.

3.4.1 Rule-generated Neurons
In unsupervised inference, each applicable rule in
the InferGraph gives a CF attached to a specific
reasoning target. In other words, a single rule gen-
erates a target-specific scalar feature for each query
and thus a rule set will give a collection of such
scalar features. However, the number of reason-
ing targets are subject to the input query, leading
to a unstable feature space as the query changes.
In contrast, in supervised inference, the reasoning
targets are fixed as the pre-defined set of labels.
This inspires a macro perspective to consider all
rules as a whole and treat the rule-generated CFs
as inherently explainable neurons with respect to
the input query. Formally, given m if-then rules,
we defined the rule-generated neuron matrix P as
follows.

P =


r1 r2 rm
p11 p12 · · · p1m d1
p21 p22 · · · p2m d2

...
...

...
pn1 pn2 · · · pnm dn

 (4)

5Throughout this paper, the term neurons represent the
feature units with explicit semantics produced by symbolic
knowledge.
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where pij is the CF given by rj regarding reasoning
target, i.e., disease di. For example, in our case,
the input query x is a set of symptoms and we
denote the corresponding vector as ~x ∈ Rk, where
k is the dimension of symptom space. It comprises
of a set of binary values (0/1), representing the
presence of the corresponding symptom. Similarly,
we can represent the rule vector in the same space
as input query. Each element of ~r is also a binary
value, indicating if the corresponding symptom is
required in its premise. As a rule only has one pre-
defined CF for a specific disease, we heuristically
assign pij = 0 for all di that is not included in the
conclusion of rj or the rule itself is not applicable
with input query.

pij = αj × I(~x · ~rj == sum(~rj)) (5)

where αj is the CF of rule rj , I is the indicator
function that returns 1 if the condition is true and 0
otherwise. In this way, the original neurons of input
query in the symptom space is extended to explain-
able rule-generated neurons in a more expressive
space.

3.4.2 KG-generated Neurons
Likewise, the large amount of relational facts in KG
can be utilized in the same manner. For each pred-
icate p∗ ∈ |Ee|, any dimension si in the original
symptom space Rk together with reasoning target
dj forms a relational triple (si, p∗, dj), which will
lead to a CF attached to the reasoning target (as de-
scribed in Section 3.3). Taking all dimensions into
account, we can obtain a matrix of CFs under the
specific predicate p∗. Therefore, the KG-generated
neuron matrix U is defined as follows.

U = [Up1 , ..., Upi , ..., Upt ] (6)

where t is the size of predefined predicate set |Ee|.
Specifically, for each predicate p∗, the matrix Up∗

is defined as follows.

Up∗ =


s1 s2 sk
u11 u12 · · · u1k d1
u21 u22 · · · u2k d2

...
...

...
un1 un2 · · · unk dn

 (7)

where uij represents the CF given by the relational
fact (si, p∗, dj).

uij = cos(θ) =
(~si + ~p∗) · ~dj

‖(~si + ~p∗)‖ × ‖~dj‖
(8)

3.4.3 Forward Propagation in COGINFER

Note that the neuron matrix P is query-specific as
the applicability of each rule is subject to the input
query x. As for the query-independent matrix U ,
only a small part of this huge matrix is activated in
the forward propagation because many relational
facts are irrelevant to the query as the InfergGraph
indicates. Specifically, if a symptom sj is included
in the input x, all triples that led by sj will be
activated. The activation matrix I is defined as
follows.

I = [I1, ..., Ij , ..., Ik], Ij =

{
~1 ∈ Rn, if sj ∈ x
~0 ∈ Rn, otherwise

(9)

By applying Hadamard product (�) on each ele-
ment of U and I , we can then obtain the activated
matrix U ′.

U ′ = [U ′p1 , ..., U
′
pi , ..., U

′
pt ], U

′
pi = Upi � I

(10)

The final input neuron matrix X is produced via
concatenation (⊕) of the rule-generated neuron ma-
trix and activated KG-generated neuron matrix:

X = U ′ ⊕ P . (11)

As presented in Fig. 3, the fully connected layer
directly connects every input neurons with all out-
put neurons, i.e, the reasoning targets. In the su-
pervised inference, each input neuron represents
a specific expert rule or relational fact, hence the
COGINFER can be regarded as a white-box model
and we can easily find the most contributing neu-
rons in the mode structure by analyzing the weight
matrix W of the fully connected layer.

4 Empirical Study

4.1 Dataset and Evaluation Metrics
In this work, we situate the cognitive inference
problem in the clinical diagnosis domain for initial
study. Accordingly, the observations are symptoms
of a patient and the conclusion refers to the most
probable diagnosed disease. We introduce two clin-
ical diagnosis datasets as initial test-beds for our
task, namely, Muzhi and MDD, both of which are
adapted from existing benchmarks for automatic
diagnosis QA tasks. The statistics is presented in
Table 3 and construction of dataset is detailed in
Appendix B.
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Models
Capability Muzhi MDD

Facts Rules Train. Exp. Hits@1 Hits@2 MRR Hits@1 Hits@2 MRR
MAJORITYGUESS 7 7 7 3 0.225 0.465 0.496 0.065 0.065 0.225

MYCIN 7 3 7 3 0.197 0.197 0.398 0.278 0.287 0.342
PURELINK 3 7 7 3 0.563 0.732 0.718 0.528 0.602 0.631
COGINFER 3 3 7 3 0.592 0.704 0.722 0.606 0.713 0.710

Table 2: Comparison with knowledge-driven methods in unsupervised setting.

Table 3: Dataset Statistics.

Statistic Muzhi MDD

Samples 710 2,151
Symptoms 66 93
Diseases 4 12
Rules 92 182
Entities 19,737 293,879
Predicates 7 162
Avg. Entities / Query (Train) 5.7 5.1
Avg. Entities / Query (Test) 4.9 5.3

Depending on the availability of training exam-
ples, we adopt different evaluation metrics for un-
supervised and supervised settings, respectively.
Specifically, we use Hits@k (k=1,2) and mean re-
ciprocal rank (MRR) as the main evaluation met-
rics. Additionally, we also plot the Accuracy-
Coverage curve to evaluate the knowledge-driven
models and report the macro precision (Pre.), re-
call (Rec.) and F1-score (F1) to evaluate the data-
driven models. The design of evaluation metrics is
detailed in Appendix C.

4.2 Baseline Methods

4.2.1 Knowledge-driven Methods

MAJORITYGUESS is a simple baseline for refer-
ence. MYCIN is a representative of expert systems
that relies on if-then rules to perform reasoning.
PURELINK is a link prediction based reasoning
method, which utilizes the distributed representa-
tions of relational facts to calculate the CFs for
each reasoning targets. The implementation details
are described in Appendix D.

4.2.2 Data-driven Methods

We compare our method with a wide range of
data-driven methods in supervised setting, includ-
ing two representative statistical machine learning
methods k-nearest neighbor (KNN), logistic regres-
sion (LR), one feature-selective logistic regression
with lasso regularization (LASSOLR), one neural-
based method Multi-layer Perceptron (MLP), and
one ensemble method named explainable boosting
method (EBM) (Lou et al., 2013).

Figure 4: Accuracy-Coverage curve of knowledge-
driven methods on Muzhi (left) and MDD (right).

4.3 Experimental Results

4.3.1 Comparison with Knowledge-driven
Methods

Table 2 shows the performance of different
knowledge-driven methods for cognitive inference
problem in unsupervised setting. Specifically, for
unsupervised setting, the ground-truth conclusion
of each query is accessible only at the test phase for
evaluation. In other words, this setting requires the
reasoners not to learn from labeled examples but to
make decisions merely based on knowledge, which
clearly rules out the data-driven methods. Hence,
it is not surprising that all the methods fail in train-
ability (Train.). Though there is no difference in ex-
plainablity (Exp.) among these knowledge-driven
models, our method is the only one that simulta-
neously utilizes both expert rules and relational
facts for machine reasoning. It is interesting to
find that the KG-based PURELINK substantially
surpass the rule-based MYCIN in both datasets,
demonstrating the utilities of different represen-
tations of symbolic knowledge for the cognitive
inference problem. We can also find that the per-
formance gap between COGINFER and PURELINK

in MDD dataset is much greater than that in the
Muzhi dataset. We attribute this to the differences
in complexity between the two datasets. More pre-
cisely, the diseases and predicates in MDD dataset
is 3x and 23x as many as that in Muzhi, making
the link prediction much harder for PURELINK.
Nonetheless, the increased complexity from Muzhi
to MDD even leads to a slight performance rise
(0.592→ 0.606 in terms of Hits@1) for COGIN-
FER, indicating that our method is more suitable
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Models
Capability Muzhi MDD

Facts Rules Train. Exp. Pre. Rec. F1 Hits@1 Hits@2 MRR Pre. Rec. F1 Hits@1 Hits@2 MRR

W/o CogKG

KNN 7 7 3 7 0.651 0.637 0.615 0.592 0.915 0.776 0.808 0.805 0.798 0.787 0.870 0.851
EBM 7 7 3 3 0.707 0.707 0.697 0.690 1.0 0.845 0.823 0.818 0.813 0.810 0.912 0.883
MLP 7 7 3 7 0.750 0.741 0.729 0.718 0.986 0.857 0.833 0.835 0.829 0.829 0.903 0.890

LASSOLR 7 7 3 7 0.777 0.776 0.769 0.761 0.986 0.878 0.832 0.834 0.828 0.829 0.921 0.894
LR 7 7 3 7 0.782 0.769 0.769 0.761 0.972 0.876 0.842 0.839 0.833 0.833 0.931 0.897

W/ CogKG COGINFER 3 3 3 3 0.820 0.811 0.797 0.789 1.0 0.894 0.877 0.861 0.857 0.856 0.931 0.908

Table 4: Comparison with data-driven methods in supervised setting.

and effective for the complex scenarios.
We also plot the accuracy-coverage curve of

knowledge-driven methods in Fig. 4. A method
cannot “cover” a test query if the query activates
none of its rules and therefore the method can-
not reach any conclusion. The brittle rule-based
method MYCIN achieves high accuracy at a low
coverage. It works almost perfectly on a small
percentage of test queries (20% in Muzhi; 30% in
MDD) where at least one of its inference rules is
activated, but fails completely on the remaining test
queries where none of its rules can be applied.

In contrast, as we change the threshold for link
prediction in PURELINK, the accuracy-coverage
data points surprisingly present a vertical line in-
stead of a curve. In other words, despite it might
have a limited performance in accuracy, it con-
sistently reaches a perfect score of 1.0 in cover-
age, showing the strong generalizability of dis-
tributed representations of KG. Similarly, as we
change the threshold for link prediction in COGIN-
FER, the curve always starts from exactly where
the MYCIN lies. This implies that the rule-
based MYCIN is a special case of the proposed
COGINFER. Specifically, as stated in Section 3.3,
when the threshold exceed a certain value, the Line
6 ∼ 7 in Alg. 3 will be disabled and the reaming
part performs the same steps as the expert system.
Generally, it can be observed that the accuracy and
coverage constrain each other on both datasets, but
we can always find a reasonable balance between
the two metrics, showing the flexibility of the pro-
posed method.

4.3.2 Comparison with Data-driven Methods
Table 4 shows the performance of different data-
driven methods for cognitive inference problem in
supervised setting. Specifically, for supervised set-
ting, we are provided with the labeled examples for
both training and evaluation. The reasoners are free
to learn from both knowledge and training data to
make decisions. However, few existing data-driven
methods can utilize the expert rules and relational
facts for training. Among all baselines, the EBM
is the only one that has explainability though its

overall performance is not satisfying enough. In
contrast, with the CogKG, our method COGINFER

achieves collectively learning from both the sym-
bolic knowledge and labeled data while keeping
the explainability.

It can be observed that the performances of all
baselines are relatively stable on the two datasets.
Specifically, the KNN always give the worst per-
formance while the LR keeps the leading position.
Noticeably, the LASSOLR is a feature-selective
method and is expected to be more effective than
the vanilla LR. However, the performances of LAS-
SOLR and LR are quite close to each other, im-
plying that the symptoms in the original feature
space leave much to be desired in separability.
As presented in Section 3.4, we argue that such
knowledge-generated features make it much easier
for the optimizer to reach the global optimum as
the knowledge greatly enriched the original fea-
ture space and make it more separable and tend to
be consistent. With sufficient training examples,
the COGINFER consistently surpasses all baselines
on the two datasets under both classification and
ranking metrics, showing its superiority over the
time-tested data-driven methods.

4.4 Ablation Study

To analyze the utility of expert rules and relational
facts in the trainable implementation of COGIN-
FER, we conduct a set of ablation study and report
the F1-score, as presented in Table 5. Specifically,
we train the COGINFER with only KG-generated
features and Rule-generated features, respectively.
Moreover, as we adopt pre-trained embeddings in
the embedding layer, we also investigate its util-
ity in the model. Generally, the model will gain
additional performance boost after fine-tuning the
embeddings, indicating the importance of adjusting
the general embedding to task-specific embedding.
Note that the fine-tuning does not affect the perfor-
mance of models with only rule-generated features
because such features are determined before the
training process.

On the other hand, we can find that both the
KG-generated features and rule-generated features
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Table 5: Ablation Study. F1-score is reported and FE
indicates fine-tuning embeddings.

Input Muzhi MDD

All Features (w/ FE) 0.797 0.857
All Features (w/o FE) 0.730 0.850

KG Feature (w/ FE) 0.711 0.759
KG Feature (w/o FE) 0.627 0.717
Rule Feature (w/ FE) 0.362 0.366

Rule Feature (w/o FE) 0.362 0.366

contribute a lot to the effectiveness of the proposed
method. As presented above, the KG Feature is
comparatively more influential than the Rule Fea-
ture. We attribute this to the differences in feature
size as the KG-generated features are generally
multiple times of the rule-generated features. More-
over, as each feature corresponds to an explicit se-
mantic meaning, we also conduct interpretability
analysis (see Appendix E) to further investigate the
learned model.

5 Conclusion

In this work, we introduce a new machine rea-
soning task, namely, cognitive inference prob-
lem, which directly challenges existing knowledge-
driven and data-driven methods. To address this
problem, we also introduce the cognitive knowl-
edge graph (CogKG) that aims to unify the hetero-
geneous symbolic knowledge of expert rules and
relational facts in knowledge graph, and propose
a general framework COGINFER with two imple-
mentations. Experimental results on two clinical
diagnosis benchmarks demonstrate the superiority
of our work over existing methods.
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A Detailed Discussion of Differences
with Existing Works

A.1 Knowledge Representation and
Reasoning

As surveyed in the recent study on integrating
prior knowledge into learning systems (von Rue-
den et al., 2021), various sources of prior knowl-
edge have been investigated in different representa-
tion forms, including algebraic equations (scientific
knowledge), spatial invariances (world knowledge),
human feedback (expert knowledge), etc. In our
cognitive inference problem, we mainly focus on
the symbolic representation of knowledge, i.e, ex-
pert rule and knowledge graph. Early works on
artificial intelligence compose the human knowl-
edge as discrete symbols, and introduces the tra-
ditional symbolic knowledge representation, i.e.,
rules, to perform complex inference (Minsky and
Papert, 1969; Lenat, 1995). Generally, these time-
tested rule-based methods such as expert system
have achieved great success in specialized domains,
but are also limited to human effort and fail to
generalize due to expensive costs (Buchanan and
Shortliffe, 1984). In contrast, the recently intro-
duced knowledge graph (KG) (Singhal, 2012), as
a novel symbolic knowledge representation, is re-
garded quite promising to overcome such bottle-
neck. Specifically, the rapid development of com-
putational hardware and deep learning makes it
possible to model the rich semantic connections
between massive discrete knowledge represented
in KG, and the symbolic knowledge of relational
facts can be mapped to distributed representation,
i.e., continuous embeddings (Bordes et al., 2013).
Though recent pre-trained language models such
as BERT (Devlin et al., 2019), ERNIE (Sun et al.,
2019) show promising performance by harvesting
prior knowledge in distributed representation from
large-scale corpus and knowledge graph, they all
require a large amount of data and computational
resources for fine-tuning and thus can only partially
address the cognitive inference problem.

Despite there are a few attempts to combine
first-order logic and relational facts for machine
reasoning, they only focus on fixed compositional
patterns of predicates (Horrocks et al., 2004; Rock-
täschel et al., 2015; Guo et al., 2016; Rocktäschel
and Riedel, 2017; Meilicke et al., 2019; Minervini
et al., 2020). Therefore, they are strictly limited to
tasks that merely reason about multi-relational data
such as knowledge graph completion and relation

classification, instead of inference problems where
observations lead to conclusions. To the best of our
knowledge, we are the first to integrate the expert
rules into knowledge graph with a unified knowl-
edge representation framework for such complex
machine reasoning task.

A.2 Integrating Knowledge into Learning
Systems

Different from the typical knowledge-driven arti-
ficial intelligence (AI) such as expert system, the
data-driven AI such as machine learning (ML) is
believed to be more generalizable due to its capa-
bility of learning implicit knowledge from labeled
data, alleviating the knowledge acquisition bottle-
neck (Feigenbaum, 1980). However, the ML sys-
tems are substantially subject to the availability of
training data and are quite limited in some cases
where labeled data is hard to obtain. One poten-
tial solution is to integrate prior knowledge into
learning system, which is also noted as informed
machine learning (von Rueden et al., 2021). To
achieve this goal in our work, there are three key
challenges. First, the proposed model is expected
to learn from the knowledge (i.e., expert rules and
relational facts) if labeled data is unavailable. Sec-
ond, if trainable, the model is required to not only
reason with knowledge, but also train with knowl-
edge. Third, a unified application of knowledge in
both training and inference is anticipated.

Previous works intergating prior knowledge in-
cludes: (1) adding knowledge into learning objec-
tive (e.g., knowledge as regularization), but knowl-
edge itself is not a part of the model. For instance,
Xia et al. use prior knowledge to guide the atten-
tion matrix in BERT (Xia et al., 2021); (2) using
knowledge as parameter initialization. For exam-
ple, Zhang et al. proposed to first learn entity and
relation representations via pre-trained language
models and then use this prior knowledge (i.e.,
the learned representations) to initialize the knowl-
edge graph embedding models (Zhang et al., 2020);
(3) using knowledge as model architecture. Typ-
ical models include inductive logic programming
(ILP) (Muggleton and De Raedt, 1994), Markov
logic network (MLN) (Richardson and Domingos,
2006), and knowledge-based artificial neural net-
works (KBANN) (Towell and Shavlik, 1994), etc.
However, these methods only focus on the logic
rule (inference principle), neglecting the rich rela-
tional facts in knowledge graph.
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Though these attempts achieved preliminary suc-
cess, none of them can directly integrate both ex-
pert rules and relational facts in existing KG into
the learning system, and they can only partially ad-
dress the above challenges, which greatly motivates
our work.

B Dataset Construction

To prepare the preliminaries of our task, we
first harvest labeled examples from two dialogue
datasets (namely, Muzhi and MDD) that are orig-
inally used for automatic diagnosis, in which
the symptoms as features and the diagnosed dis-
ease as label. The relational facts are directly
collected from existing well-constructed knowl-
edge graphs like Chinese Medical Knowledge
Graph (CMeKG) (Byambasuren et al., 2019) and
SNOMED-CT6, accompanying with Muzhi (Chi-
nese) and MDD (English) respectively. We further
apply association rule mining on the labeled data
followed by human expert validation to craft if-
then rules. Specifically, we invite three medical
experts to check the mined rules and filter them via
consistency validation. Lastly, we also manually
align the entities in premise and conclusion of each
rule to the terminologies of KG to make the ex-
pert rules and relational facts compatible with each
other. The details of each dataset are as follows.

• Muzhi dataset is originated from a Chinese
online healthcare community7 and is firstly
used for dialogical automated diagnosis (Wei
et al., 2018). In this work, we collect the
explicit symptoms and implicit symptoms as
observations and the diagnosed disease as con-
clusion to create labelled examples. After
terminology alignment, it contains 710 sam-
ples with 66 symptoms related to 4 diseases,
i.e., infantile diarrhea (ID), children functional
dyspepsia (CFD), upper respiratory infection
(URI), and children’s bronchitis (CB). We ran-
domly split the dataset to training set, valida-
tion set, test set in the proportion of 8:1:1. Ad-
ditionally, this dataset contains 92 if-then rules
related to the above 4 diseases, and 19,737 dis-
tinct entities connected with 7 predicates.

• MDD is an English medical diagnosis dia-
logue (MDD) dataset proposed in the ICLR

6https://www.nlm.nih.gov/healthit/snomedct
7http://muzhi.baidu.com

2021 challenge8. Following the Muzhi
dataset, the original dialogical records are
converted into labeled instances. After termi-
nology alignment, the MDD dataset is three
times larger than the Muzhi dataset, contain-
ing 2,151 samples with 93 symptoms related
to 12 diseases. Likewise, the dataset is ran-
domly split to 8:1:1 for training, validation
and test. It contains 182 if-then rules related
to the above 12 diseases, and 293,879 distinct
entities connected with 162 predicates.

C Design of Evaluation Metrics

As the proposed COGINFER is not bound with un-
supervised inference or supervised inference, we
can evaluate it under both unsupervised setting and
supervised setting. According to the truthiness of
the most likely conclusion of each query, the re-
sult can be categorized into three types, namely,
true conclusion (TC), false conclusion (FC), and
not conclusive (NC), indicating the model cannot
output any conclusion for the query. Generally, we
evaluate the model with the following two ranking
metrics, i.e., Hits@k (k=1,2) and mean reciprocal
rank (MRR).

Hits@k =
1

|R|
∑
r∈R

I[r ≤ k] (12)

MRR =
1

|R|
∑
r∈R

r−1 = (
|R|∑

r∈R r
−1 )
−1 (13)

whereR denotes the set of ranks for all predicted
most likely conclusions and I is the indicator func-
tion. More precisely, for each TC result, the rank
will always be 1. For any FC result, the rank could
be any integer in [2, n], where n is the number of
diseases contained in the dataset. For NC result,
the rank is set to the worst case by default, i.e, it
will always be n.

In particular, for knowledge-driven method,
when it encounters a query for which no rules or
facts have been pre-defined in the knowledge base,
the system will get stuck and cannot output any con-
clusion. In other words, it does not even understand
the query. Therefore, we also define Accuracy and
Coverage to evaluate these knowledge-driven mod-

8https://mlpcp21.github.io/pages/challenge.html
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els.

Accuracy =
TC

TC + FC
(14)

Coverage =
TC + FC

TC + FC +NC
(15)

Instead of reporting the discrete data points, we plot
the Accuracy-Coverage curve to comprehensively
compare different knowledge-driven models.

In contrast, for data-driven models, they have
predefined fixed reasoning targets and will not out-
put any NC results. Hence, the above Accuracy
and Coverage metrics cannot properly evaluate the
data-driven models. In this case, we adopt the clas-
sification metrics such as macro precision (Pre.),
recall (Rec.) and F1-score (F1) as the evaluation
metrics.

D Implementation Details

For knowledge-driven baselines, the MYCIN is
implemented with the Paip-python library9. The
threshold for link prediction in PURELINK is de-
termined from [-1, 1] via grid search on the mixed
set of training and validation data. For data-driven
baselines, we implement the EBM with the Imter-
pretML library10. The rest data-driven baselines
are implemented with the scikit-learn package (Pe-
dregosa et al., 2011). All hyperparameters are kept
as default except the following ones that are deter-
mined through grid search on validation set. For
KNN, the number of neighbors k is searched from
[1, 2, 3, ..., 10]. For LR and LASSOLR, the in-
verse of regularization strength C is searched from
[0.1, 1, 10]. For MLP and EBM, the learning rate
is searched from [1e-5, 1e-4, 1e-3, 1e-2]. More-
over, the number of hidden layers/nodes in MLP is
searched from [(100,), (50,50), (50,50,50)].

For the proposed COGINFER, the threshold for
link prediction in non-trainable (unsupervised) im-
plementation is determined from [-1, 1] via grid
search on the mixed set of training and validation
data. Note that the trainable implementation of
our framework can be initialized from pre-trained
embeddings and weights. For Muzhi dataset, the
embedding layer is initialized with pre-learned em-
beddings of CMeKG by TransE and the fully con-
nection layer is initialized with that of a pre-trained
group-lasso regularised logistic regression model.

9https://github.com/dhconnelly/paip-python
10https://github.com/interpretml/interpret

For MDD dataset, the embedding layer is initial-
ized with pre-learned embeddings of SNOMED-
CT by TransE and the fully connection layer is
initialized with that of a pre-trained L2 regularised
logistic regression model. For both datasets, we
only fine-tune the embedding layer while freezing
the fully connected layer when performing opti-
mization.

E Interpretability Analysis

To illustrate the interpretability of the pro-
posed COGINFER, we conduct two sets of case
study as presented in Fig. 5. The values in global
weight (Fig. 5(a)) are selected from columns of the
weight matrix W , corresponding to two closely-
related respiratory diseases “Asthma" and “Pneu-
monia". Likewise, the values in instance-level be-
havior (Fig. 5(b)) are selected from columns of the
production of input neuron matrix X and weight
matrix W .

For the global weight, we visualize some se-
lected cells of two rows (corresponding to the dis-
ease) of the weight matrix W to interpret the rea-
soning of COGINFER. According to the heatmap,
the most effective rules and facts for diagnosing
“Asthma” includes “Dyspnea”, “Chest tightness”
and so on. In contrast, the diagnosis of “pneu-
monia” mainly involves “Night sweats”, “Loss of
appetite” and “Chills”, which helps distinguish
“Asthma” from “Pneumonia”. Meanwhile, we can
learn that “Sputum” and “Coughing” are similar
symptoms of “Asthma” and “Pneumonia”. Encour-
agingly, according to the public literature, what
we learn from the weight matrix is consistent with
common medical knowledge (Cukic et al., 2012).

For the instance-level behavior, we study a spe-
cific sample given its symptoms. We visualize
some cells of the production of input neuron matrix
X and weight matrix S. These scores represent the
importance of the corresponding activated rules or
facts in the diagnostic process. As “coughing” and
“Sputum” are common symptoms of “Asthma” and
“Pneumonia”, they both score high under the corre-
sponding rules. Moreover, it is interesting to find
that the high scores of “Chest tightness” and “Sore
throat” are also in line with the fact that they are
widely believed to be “Asthma”-indicative symp-
toms that lead to the diagnosis of “Asthma”, reveal-
ing the interpretability of the proposed method.
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(a) Global Weights

(b) Instance-level Behavior

Figure 5: Interpretability study with real cases.


