
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the
12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 47–56

November 20–23, 2022. ©2022 Association for Computational Linguistics

47

CNN for Modeling Sanskrit Originated Bengali and Hindi Language

Chowdhury Rafeed Rahman, MD. Hasibur Rahman,
Mohammad Rafsan, Samiha Zakir, Rafsanjani Muhammod

United International University
Mohammed Eunus Ali

Bangladesh University of Engineering and Technology
rafeed@cse.uiu.ac.bd

Abstract

Though recent works have focused on model-
ing high resource languages, the area is still un-
explored for low resource languages like Ben-
gali and Hindi. We propose an end-to-end train-
able memory efficient CNN architecture named
CoCNN to handle specific characteristics such
as high inflection, morphological richness, flex-
ible word order and phonetical spelling errors
of Bengali and Hindi. In particular, we intro-
duce two learnable convolutional sub-models
at word and at sentence level that are end-
to-end trainable. We show that state-of-the-
art (SOTA) Transformer models including pre-
trained BERT do not necessarily yield the best
performance for Bengali and Hindi. CoCNN
outperforms pretrained BERT with 16X less
parameters and achieves much better perfor-
mance than SOTA LSTMs on multiple real-
world datasets. This is the first study on the ef-
fectiveness of different architectures from Con-
volution, Recurrent, and Transformer neural
net paradigm for modeling Bengali and Hindi.
Code and data related to this research are avail-
able at: https://bit.ly/3MkQUuI

1 Introduction

Bengali and Hindi are the fourth and sixth most
spoken language in the world, respectively. Both
of these languages originated from Sanskrit (Staal,
1963) and share some unique characteristics that
include (i) high inflection, i.e., each root word may
have many variations due to addition of different
suffixes and prefixes, (ii) morphological richness,
i.e., there are large number of compound letters,
modified vowels and modified consonants, and (iii)
flexible word-order, i.e., the importance of word
order and their positions in a sentence are loosely
bounded (Examples shown in Figure 1). Many
other languages such as Nepali, Gujarati, Marathi,
Kannada, Punjabi and Telugu also share these char-
acteristics. Neural language models (LM) have
shown great promise recently in solving several key

NLP tasks such as word prediction and sentence
completion in major languages such as English and
Chinese (Athiwaratkun et al., 2018; Takase et al.,
2019; Pham et al., 2016; Gao et al., 2002; Cai and
Zhao, 2016; Yang et al., 2016). To the best of our
knowledge, none of the existing study investigates
the efficacy of recent LMs in the context of Bengali
and Hindi. We conduct an in-depth analysis of ma-
jor deep learning architectures for LM and propose
an end-to-end trainable memory efficient CNN ar-
chitecture to address the unique characteristics of
Bengali and Hindi.

Root Word Inflected Variations
�শাধ (repay) পির�শাধ (pay back), �িত�শাধ (revenge), �শািধত (purified)
চল (trend) চলিত (current), চালক (driver), চলমান (moving)
হার (lose) পিরহার (leave), উপহার (prize), হার�জত (competition)
High Inflection: different types of words derived from same root word

Valid Sentence Samples

আজ িবকােল রা�পিত আসেবন
রা�পিত আজ িবকােল আসেবন
রা�পিত আসেবন আজ িবকােল

(The president will come this afternoon)

খুিন সে�েহ পাচঁজনেক আটক কেরেছ পুিলশ
পুিলশ পাচঁজনেক আটক কেরেছ খুিন সে�েহ
পুিলশ পাচঁজনেক খুিন সে�েহ আটক কেরেছ

(The police have arrested five people because
of murder suspicion)

Flexible Word-Order: Each of the three sentences are
valid and carry the same meaning, but their word order

is very different from one another

Compound
Character

Component
Characters

� ক + ্ + ত
� ক + ্ + ষ
� ব + ্ + র

Morphological Richness: Around 170
compound characters in Bengali each

consisting of 3-5 simple characters

�� ন+ ্ +ত+ ্ +য

Figure 1: Bengali language unique characteristics

State-of-the-art (SOTA) techniques for LM can
be categorized into three sub-domains of deep
learning: (i) convolutional neural network (CNN)
(Pham et al., 2016; Wang et al., 2018) (ii) recurrent
neural network (Bojanowski et al., 2017; Mikolov
et al., 2012; Kim et al., 2016; Gerz et al., 2018), and
(iii) Transformer attention network (Al-Rfou et al.,
2019; Vaswani et al., 2017; Irie et al., 2019; Ma
et al., 2019). Long Short Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997) based models,
which are suitable for learning sequence and word
order information, are not effective for modeling
Bengali and Hindi due to their flexible word order
characteristic. On the other hand, Transformers use

https://bit.ly/3MkQUuI

48

dense layer based multi-head attention mechanism.
They lack the ability to learn local patterns in sen-
tence level, which in turn puts negative effect on
modeling languages with loosely bound word order.
Most importantly, neither LSTMs nor Transform-
ers use any suitable measure to learn intra-word
level local pattern necessary for modeling highly
inflected and morphologically rich languages.

We observe that learning inter (flexible word or-
der) and intra (high inflection and morphological
richness) word local patterns is of paramount im-
portance for Bengali and Hindi LM. To accommo-
date such characteristics, we design a novel CNN
architecture, namely Coordinated CNN (CoCNN)
that achieves SOTA performance with low train-
ing time. In particular, CoCNN consists of two
learnable convolutional sub-models: word level
(Vocabulary Learner (VL)) and sentence level (Ter-
minal Coordinator (TC)). VL is designed for sylla-
ble pattern learning, whereas TC serves the purpose
of word coordination learning while maintaining
positional independence, which suits the flexible
word order of Bengali and Hindi. CoCNN does
not explicitly incorporate any self attention mecha-
nism like Transformers; rather it relies on TC for
emphasizing on important word patterns. CoCNN
achieves significantly better performance than pre-
trained BERT for Bengali and Hindi LM with 16X
less parameters. We further enhance CoCNN by
introducing skip connection and parallel convolu-
tion branches in VL and TC, respectively. This
modified architecture (with negligible increase in
parameter number) is named as CoCNN+. We val-
idate the effectiveness of CoCNN+ on a number
of tasks that include next word prediction in erro-
neous setting, text classification, sentiment analysis
and spell checking. CoCNN+ shows superior per-
formance than contemporary LSTM based models
and pretrained BERT.

In summary, the contributions of this paper are
as follows:

• An end-to-end trainable CoCNN model based
on the coordination of two CNN sub-models

• In-depth analysis and comparison on different
SOTA LMs in three paradigms: CNN, LSTM,
and Transformer

• Some simple modifications in CoCNN to
achieve even better performance

• Using VL sub-model of CoCNN+ as an effec-
tive spell checker for Bengali

2 Our Approach

Traditional CNN based approaches (Pham et al.,
2016) represent the entire input sentence/ para-
graph using a matrix of size SN × SV , where SN

and SV represent number of characters in the sen-
tence/ paragraph and the character representation
vector size, respectively. In such character based
approach, the model does not have the ability to
consider each word in the sentence as a separate
entity. However, it is important to understand the
contextual meaning of each word and to find out re-
lationship among those words for sentence seman-
tics understanding. Coordinated CNN (CoCNN)
is aimed to achieve this feat. Figure 2 illustrates
CoCNN that has two major components. Vocabu-
lary Learner component works at word level, while
Terminal Coordinator component works at sen-
tence/ paragraph level. Both of these components
are 1D CNN based sub-model at their core and are
trained end-to-end.

2.1 Vocabulary Learner

Vocabulary Learner (VL) is used to transform each
input word into a vector representation called CN-
Nvec. We represent each input word Wordi by a
matrix Wi. Wi consists of m vectors each of size
lenC . These vectors C⃗1, C⃗2, . . . C⃗m represent one
hot vector of character C1, C2, . . . Cm, respectively
of Wordi. Representation detail has been depicted
in the bottom right corner of Figure 2. Applying
1D convolution (conv) layers on matrix Wi helps in
deriving key local patterns and sub-word informa-
tion of Wordi. After passing Wi matrix through
the first conv layer, we obtain feature matrix W 1

i .
Passing W 1

i through the second conv layer pro-
vides us with feature matrix W 2

i . So, the Lth conv
layer provides us with feature matrix WL

i . VL sub-
model consists of such 1D conv layers standing
sequentially one after the other. Conv layers near
matrix Wi are responsible for identifying key sub-
word patterns of Wordi, while conv layers further
away focus on different combinations of these key
sub-word patterns. Such word level local pattern
recognition plays key role in identifying semantic
meaning of a word irrespective of inflection or pres-
ence of spelling error. Each intermediate conv layer
output is batch normalized. The final conv layer
output matrix WL

i is flattened and formed into a
vector Fi of size lenF . Fi is the CNNvec represen-
tation of Wordi. We obtain CNNvec representation
from each of our input words in a similar fashion

49

Sentence Level
Sequential 1D CNN

Sub-Model

Dense and
Softmax Layer

Concatenation
of CNNvecs

Flattened
Coordination

vector

Terminal
Coordinator

Word Level
Sequential 1D CNN

Sub-Model

WordnWordiWord2Word1

Flattened
vector

CNNvec

Concatenation
of Character
Embeddings

per word

Vocabulary
Learner

Wi

Fi

M

Output

lenF

C1 C2 C3 C4 Cm

lenC

1D conv of
 filter size 3

F1 F2 F3 F4 Fn

1D conv of
 filter size 3

Sentence Level

Word Level

Figure 2: 1D CNN based CoCNN architecture

applying the same CNN sub-model.

2.2 Terminal Coordinator

Terminal Coordinator (TC) takes the CNNvecs ob-
tained from VL as input and returns a single Coordi-
nation vector as output which is used for final pre-
diction. For n words Word1,Word2, . . .Wordn;
we obtain n such CNNvecs F⃗1, F⃗2, . . . F⃗n, respec-
tively. Each CNNvec is of size lenF . Concate-
nating these CNNvecs provide us with matrix M
(details shown in the middle right portion of Figure
2). Applying 1D conv on matrix M facilitates the
derivation of key local patterns found in input sen-
tence/ paragraph which is crucial for output predic-
tion. A sequential 1D CNN sub-model with design
similar to VL having different sets of weights is
employed on matrix M . Conv layers near M are
responsible for identifying key word clusters, while
conv layers further away focus on different com-
binations of these key word clusters important for
sentence or paragraph level local pattern recogni-
tion. The final output feature matrix obtained from
the 1D CNN sub-model of TC is flattened to obtain
the Coordination vector, a summary of important
information obtained from the input word sequence
in order to predict the correct output.

Conv1

Conv2

ConvL

+

Wi M

Conv_A1

Conv_A2

Conv_AL

Conv_B1

Conv_B2

Conv_BL

Conv_C1

Conv_C2

Conv_CL

Channel-wise
Concatenate

Conv_AL'

CNNvec Formation
for Wordi

Coordination
Vector Formation

Matrix Representation
for Wordi

Matrix Formed from
Concatenation of CNNvecs

Figure 3: CoCNN+ architecture with its modified VL
(left) and TC (right). ConvL means Lth conv layer,
whereas Conv_A means a conv layer with filter size A.

2.3 Extending CoCNN

We perform two simple modifications in CoCNN to
form CoCNN+ architecture with minimal increase
in parameter number (see Figure 3).
First, we modify the CNN sub-model of VL. We
add the output feature matrix of the first conv layer
Conv1 with the output feature matrix of the last
conv layer ConvL. We pass the resultant feature
matrix on to subsequent layers (same as CoCNN)

50

for CNNvec formation of Wordi. Such modifica-
tion helps in two cases - (i) it eliminates the gradi-
ent vanishing problem of the first conv layer of VL
and (ii) it gives CNNvec access to both low level
and high level features of the corresponding input
word.
Second, we modify the CNN sub-model of TC by
passing matrix M simultaneously to three 1D CNN
branches. The conv filter sizes of the left, middle
and right branches are A, B and C, respectively;
where, A < B and B < C. The outputs from the
three branches are concatenated channel-wise and
are then passed on to the final conv layer having
filter size A. The output feature matrix is passed on
to subsequent layers (same as CoCNN) for Coor-
dination vector formation. Multiple conv branches
with different filter sizes help in learning both short
and long range local patterns, especially when the
input sentence or document is long.

3 Experimental Setup

3.1 Dataset Specifications

Bengali dataset consists of articles from online pub-
lic news portals such as Prothom-Alo (Rahman,
2017), BDNews24 (Khalidi, 2015) and Nayadi-
ganta (Mohiuddin, 2019). The articles encompass
domains such as politics, entertainment, lifestyle,
sports, technology and literature. The Hindi dataset
consists of Hindinews (Pandey, 2018), Livehin-
dustan (Shekhar, 2018) and Patrika (Jain, 2018)
newspaper articles available open source in Kag-
gle encompassing similar domains. Nayadiganta
(Bengali) and Patrika (Hindi) datasets have been
used only as independent test sets. Detailed statis-
tics of the datasets are provided in Table 1. Top
words have been selected such that they cover at
least 90% of the dataset. For each Bengali dataset,
we have created a new version of the dataset by
incorporating spelling errors using a probabilis-
tic error generation algorithm (Sifat et al., 2020),
which enables us to test the effectiveness of LMs
for erroneous datasets.

3.2 Performance Metric

We use perplexity (PPL) to assess the performance
of the models for next word prediction task. Sup-
pose, we have sample inputs I1, I2, . . . , In and our
model provides probability values P1, P2, . . . , Pn,
respectively for their ground truth output tokens.
Then the PPL score of our model for these samples
can be computed as:

PPL = exp(− 1
n

∑n
i=1 ln(Pi))

For text classification and sentiment analysis, we
use accuracy and F1 score as our performance
metric.

3.3 Model Optimization

For model optimization, we use SGD optimizer
with a learning rate of 0.001 while constraining
the norm of the gradients to below 5 for exploding
gradient problem elimination. We use Categorical
Cross-Entropy loss for model weight update and
dropout (Hinton et al., 2012) with probability 0.3
between the dense layers for regularization. We
use Relu (Rectified Linear Unit) as hidden layer
activation function. We use a batch size of 64. As
we apply batch normalization on CNN intermediate
outputs, we do not use any other regularization
effect such as dropout on these layers (Luo et al.,
2018).

We use Anaconda 3 with Python 3.8 version and
Tensorflow 2.6.0 framework (Abadi et al., 2016)
for our implementation. We use two GPU servers
for training our models: (i) 12 GB Nvidia Titan Xp
GPU, Intel(R) Core(TM) i7-7700 CPU (3.60GHz)
processor model (ii) 32 GB RAM with 8 cores 24
GB Nvidia Tesla K80 GPU, Intel(R) Xeon(R) CPU
(2.30GHz) processor model

3.4 CoCNN Hyperparameters

3.4.1 Vocabulary Learner Details

Vocabulary Learner sub-model consists of a char-
acter level embedding layer producing a 40 size
vector from each character, then four consecutive
layers each consisting of 1D convolution (batch nor-
malization and Relu activation between each pair
of convolution layers) and finally, a 1D global max-
pooling in order to obtain CNNvec representation
from each input word. The four 1D convolution lay-
ers consist of (32, 2), (64, 3), (64, 3), (128, 4) con-
volution, respectively. Here the first and second
element of each tuple denote number of convolu-
tion filters and kernel size, respectively. As we
can see, the filter size and number of filters of the
convolution layers are monotonically increasing
as architecture depth increases. It is because deep
convolution layers need to learn the combination of
various low level features which is a more difficult
task compared to the task of shallow layers that
include extraction of low level features.

51

Datasets No. of
Unique words

No. of
Unique Characters

No. of
Top Words

No. of
Training Samples

No. of
Validation Samples

Prothom-Alo 260 K 75 13 K 5.9 M 740 K
BDNews24 170 K 72 14 K 2.9 M 330 K
Nayadiganta 44 K 73 _ _ 280 K
Hindinews 37 K 74 5.5 K 87 K 10 K

Livehindustan 60 K 73 4.5 K 210 K 20 K
Patrika 28 K 73 _ _ 307 K

Table 1: Dataset details (K and M denote 103 and 106 multiplier, respectively)

3.4.2 Terminal Coordinator Details
The Terminal Coordinator sub-model
used in CoCNN architecture uses six
convolution layers which consist of
(32, 2), (64, 3), (64, 3), (96, 3), (128, 4), (196, 4)
convolution. Its design is similar to that of
Vocabulary Learner sub-model. The final output
feature matrix obtained from this CNN sub-model
is flattened to get the Coordination vector. After
passing this vector through a couple of dense
layers, we use Softmax activation function at the
final output layer to get the predicted output.

3.5 CoCNN+ Hyperparameters
The CNN sub-model of Vocabulary Learner in
CoCNN+ is the same as CoCNN except for one
aspect (see Figure 3) - we change the first convo-
lution layer to have 128 filters of size 2 instead of
32 filters. This is done to respect the matrix dimen-
sionality during skip connection based addition.

Instead of providing a sequential 1D CNN sub-
model in Terminal Coordinator, we provide three
parallel branches each consisting of four convolu-
tion layers (see Figure 3) where the filter numbers
are 32, 64, 96 and 128. The filter size of the left-
most, middle and the rightmost branch are 3, 5
and 7, respectively. All convolution operations are
dimension preserving through the use of padding.
The feature matrices of all three of these branches
are concatenated channel-wise and finally, this con-
catenated matrix is passed on to a final convolution
layer with 196 filters of size 3.

4 Results and Discussion

4.1 Comparing CoCNN with Other CNNs
We compare CoCNN with three other CNN-based
baselines (see Figure 4a). CNN_Van is a simple se-
quential 1D CNN model of moderate depth (Pham
et al., 2016). It considers the full input sentence/
paragraph as a matrix. The matrix consists of char-
acter representation vectors. CNN_Dl uses dilated
conv in its CNN layers which allows the model to

have a larger field of view (Roy, 2019). Such a
change in conv strategy shows slight performance
improvement. CNN_Bn has the same setting as of
CNN_Van, but uses batch normalization on inter-
mediate conv layer outputs. Such a measure shows
significant performance improvement in terms of
loss and PPL score. Proposed CoCNN surpasses
the performance of CNN_Bn by a wide margin. We
believe that the ability of CoCNN to consider each
word of a sentence as a separate meaningful entity
is the reason behind this drastic improvement.

4.2 Comparing CoCNN with SOTA LSTMs

We compare CoCNN with four LSTM-based mod-
els (see Figure 4b). Two LSTM layers are stacked
on top of each other in all four of these mod-
els. We do not compare with LSTM models that
use Word2vec (Rong, 2014) representation as this
representation requires fixed size vocabulary. In
spelling error prone setting, vocabulary size is the-
oretically infinite. We start with LSTM_FT, an
architecture using sub-word based FastText repre-
sentation (Athiwaratkun et al., 2018; Bojanowski
et al., 2017). Character aware learnable layers
per LSTM time stamp form the new generation
of SOTA LSTMs (Mikolov et al., 2012; Kim et al.,
2016; Gerz et al., 2018; Assylbekov et al., 2017).
LSTM_CA acts as their representative by introduc-
ing variable size parallel conv filter output con-
catenation as word representation. The improve-
ment over LSTM_FT in terms of PPL score is al-
most double. Instead of unidirectional many to
one LSTM, we introduce bidirectional LSTM in
LSTM_CA to form BiLSTM_CA which shows slight
performance improvement. We introduce Bahdanu
attention (Bahdanau et al., 2014) on BiLSTM_CA to
form BiLSTM_CA_Attn architecture. Such measure
shows further performance boost. CoCNN shows
almost four times improvement in PPL score com-
pared to BiLSTM_CA_Attn. If we compare Figure
4b and 4a, we can see that CNNs perform rela-
tively better than LSTMs in general for Bengali

52

2 4 6 8 10 12 14
Epoch

5.75

6.00

6.25

6.50

6.75

7.00

7.25

Lo
ss

CNN_Van (985)
CNN_Dl (952)
CNN_Bn (544)
CoCNN (203)

(a) CNN paradigm

2 4 6 8 10 12 14
Epoch

5.75

6.00

6.25

6.50

6.75

7.00

7.25

Lo
ss

LSTM_FT (2005)
LSTM_CA (1198)
BiLSTM_CA (1113)
BiLSTM_CA_Attn (771)
CoCNN (203)

(b) LSTM paradigm

2 4 6 8 10 12 14
Epoch

5.6

5.8

6.0

6.2

6.4

6.6

6.8

7.0

7.2

Lo
ss

Vanilla_Tr (798)
BERT (469)
BERT_Aux (402)
BERT_Pre (210)
CoCNN (203)

(c) Transformer paradigm

Figure 4: Comparing CoCNN with SOTA architectures from CNN, LSTM and Transformer paradigm on Prothom-
Alo validation set. The score shown beside each model name denotes that model’s PPL score on Prothom-Alo
validation set after 15 epochs of training. Note that this dataset contains synthetically generated spelling errors.

LM. LSTMs have a tendency of learning sequence
order information which imposes positional depen-
dency. Such characteristic is unsuitable for Bengali
and Hindi with flexible word order.

4.3 Comparing CoCNN with SOTA
Transformers

We compare CoCNN with four Transformer-based
models (see Figure 4c). We use popular FastText
word representation with all compared transform-
ers. Our comparison starts with Vanilla_Tr, a single
Transformer encoder (similar to the Transformer
designed by Vaswani et al. (2017)). In BERT, we
stack 12 transformers on top of each other where
each Transformer encoder has more parameters
than the Transformer of Vanilla_Tr (Kenton and
Toutanova, 2019; Irie et al., 2019). BERT with its
large depth and enhanced encoders almost double
the performance shown by Vanilla_Tr. We do not
pretrain this BERT architecture. We follow the
Transformer architecture designed by Al-Rfou et al.
(2019) and introduce auxiliary loss after the Trans-
former encoders situated near the bottom of the
Transformer stack of BERT to form BERT_Aux. In-
troduction of such auxiliary losses shows moderate
improvement of performance. BERT_Pre is the pre-
trained version of BERT. We follow the word mask-
ing based pretraining scheme of Liu et al. (2019).
The Bengali pretraining corpus consists of Prothom
Alo (Rahman, 2017) news articles dated from 2014-
2017 and BDNews24 (Khalidi, 2015) news articles
dated from 2015-2017. The performance of BERT
jumps up more than double when such pretraining
is applied. CoCNN without utilizing any pretrain-
ing achieves marginally better performance than
BERT_Pre. Unlike Transformer encoders, conv

imposes attention with a view to extracting impor-
tant patterns from the input to provide the correct
output. Furthermore, VL of CoCNN is suitable for
deriving semantic meaning of each input word in
highly inflected and error prone settings.

4.4 Comparing BERT_Pre, CoCNN and
CoCNN+

0 5 10 15 20 25 30
Epoch

5.25

5.50

5.75

6.00

6.25

6.50

6.75

Lo
ss

BERT_Pre (152)
CoCNN (147)
CoCNN+ (122)

(a) Plot on Bengali dataset

0 5 10 15 20 25 30
Epoch

4.0

4.2

4.4

4.6

4.8

5.0

5.2

Lo
ss

BERT_Pre (65)
CoCNN (57)
CoCNN+ (42)

(b) Plot on Hindi dataset

Figure 5: Comparing BERT_Pre, CoCNN and CoCNN+
on Bengali (Prothom-Alo) and Hindi (Hindinews and
Livehindustan merged) validation set. The score shown
beside each model name denotes that model’s PPL score
after 30 epochs of training on corresponding training
set.

BERT_Pre is the only model showing perfor-

53

Datasets Error? BERT_
Pre

Co-
CNN

Co-
CNN+

Prothom
Alo

Yes 152 147 122
No 117 114 99

BDNews
24

Yes 201 193 170
No 147 141 123

Hindinews
Hindustan

No 65 57 42

Naya
Diganta

Yes 169 162 143
No 136 133 118

Patrika No 67 57 44

Table 2: PPL Score Comparison

mance close to CoCNN in terms of validation loss
and PPL score (see Figure 4). We compare these
two models with CoCNN+. We train the mod-
els for 30 epochs on several Bengali and Hindi
datasets and obtain their PPL scores on correspond-
ing validation sets (training and validation set were
split at 80%-20% ratio). Bengali datasets include
Prothom-Alo, BDNews24; while Hindi dataset in-
cludes Hindinews, Livehindustan. We use Nayadi-
ganta and Patrika dataset for Bengali and Hindi
independent test set, respectively. The Hindi pre-
training corpus consists of Hindi Oscar Corpus
(Thakur, 2019), preprocessed Wikipedia articles
(Gaurav, 2019), HindiEnCorp05 dataset (Bojar
et al., 2014) and WMT Hindi News Crawl data
(Barrault et al., 2019). From the graphs of Figure
5 and PPL score comparison Table 2, it is evident
that CoCNN marginally outperforms its nemesis
BERT_Pre in all cases, while CoCNN+ outper-
forms both CoCNN and BERT_Pre by a significant
margin. There are 8 sets of PPL scores in Table
2 for the three models on eight different dataset
settings. We use these scores to perform a one-
tailed paired t-test in order to determine whether
the reduction of PPL score seen in CoCNN+ is
statistically significant when P-value threshold is
set to 0.05. The test shows that the improvement
is indeed significant compared to both BERT_Pre
and CoCNN. Number of parameters of BERT_Pre,
CoCNN and CoCNN+ are 74 M, 4.5 M and 4.8
M, respectively. Though the parameter number of
CoCNN+ and CoCNN is close, CoCNN+ has 15X
fewer parameters than BERT_Pre.

4.5 Comparison in Downstream Tasks

We have compared BERT_Pre and CoCNN+ in
three different downstream tasks:

Dataset BERT_Pre CoCNN+
Question
Classify 0.905 0.926

Product
Review 0.841 0.86

Hate
Speech 0.77 0.781

Table 3: Performance comparison between BERT_Pre
and CoCNN+ in three downstream tasks (F1 score)

(1) Bengali Question Classification (QC): This
task consists of six classes (entity, numeric, hu-
man, location, description and abbreviation type
question). The dataset has 3350 question samples
(Islam et al., 2016).
(2) Hindi Product Review Classification: The
task is to classify a review into positive or negative
class where the dataset consists of 2355 sample
reviews (Kakwani, 2020).
(3) Hindi Hate Speech Detection: The task is to
identify whether a provided speech is a hate speech
or not. The dataset consists of 3654 speeches
(HASOC, 2019).

We use five fold cross validation while perform-
ing comparison on these datasets (see mean results
in Table 3) in terms of F1 score. One tailed in-
dependent t-tests with a P-value threshold of 0.05
has been performed on the 5 validation F1 scores
obtained from five fold cross validation of each of
the two models. Our statistical test results vali-
date the significance of the improvement shown by
CoCNN+ for all three of the mentioned tasks.

Spell Checker
Algorithm

Synthetic
Error

Real
Error

Vocabulary Learner 71.1% 61.1%
Phonetic Rule 61.5% 32.5%

Clustering Rule 51.8% 43.8%

Table 4: Bengali spelling correction (accuracy)

We also investigate the potential of VL of
CoCNN+ as a Bengali spell checker (SC). Both
CoCNN and CoCNN+ model use VL for producing
CNNvec representation from each input word. We
extract the CNN sub-model of VL from our trained
(on Prothom-Alo dataset) CoCNN+ model. We pro-
duce CNNvec for all 13 K top words of Prothom-
Alo dataset. For any error word, We, we can gen-
erate its CNNvec Ve using VL. We can calculate
cosine similarity, Cosi between Ve and CNNvec

54

Vi of each top word Wi. Higher cosine similarity
means greater probability of being the correct ver-
sion of We. We have discovered such approach to
be effective for correct word generation. Recently,
a phonetic rule based approach has been proposed
by Saha et al. (2019), where a hybrid of Soundex
(UzZaman and Khan, 2004) and Metaphone (Uz-
Zaman and Khan, 2005) algorithm has been used
for Bengali word level SC. Another SC proposed in
recent time has taken a clustering based approach
(Mandal and Hossain, 2017). We compare our pro-
posed VL based SC with these two existing SCs
(see Table 4). Both the real and synthetic error
dataset consist of 20k error words formed from the
top 13 K words of Prothom-Alo dataset. The real
error dataset has been collected from a wide range
of Bengali native speakers using an easy to use web
app. Results show the superiority of our proposed
SC over existing approaches.

5 Related Works

Although a significant number of works for LM of
high resource languages like English and Chinese
are available, very few researches of significance
for LM in low resource languages like Bengali and
Hindi exist. In this section, we mainly summarize
major LM related research works.

Sequence order information based statistical
RNN models such as LSTM and GRU have been
popular for LM tasks (Mikolov et al., 2011). Sun-
dermeyer et al. (2012) showed the effectiveness of
LSTM for English and French LM. The regular-
izing effect on LSTM was investigated by Merity
et al. (2017). SOTA LSTM models learn sub-word
information in each time stamp. Bojanowski et al.
(2017) proposed a morphological information ori-
ented character N-gram based word vector repre-
sentation. It was improved by Athiwaratkun et al.
(2018) and is known as FastText. Mikolov et al.
(2012) proposed a technique for learning sub-word
level information from data, while such an idea
was integrated in a character aware LSTM model
by Kim et al. (2016). Takase et al. (2019) further
improved word representation by combining ordi-
nary word level and character-aware embedding.
Assylbekov et al. (2017) showed that character-
aware neural LMs outperform syllable-aware ones.
Gerz et al. (2018) evaluated such models on 50
morphologically rich languages.

Self attention based Transformers have become
the SOTA mechanism for sequence to sequence

modeling in recent years (Vaswani et al., 2017).
Some recent works have explored the use of such
models in LM. Deep Transformer encoders outper-
form stacked LSTM models (Irie et al., 2019). A
deep stacked Transformer model utilizing auxiliary
loss was proposed by Al-Rfou et al. (2019) for char-
acter level language modeling. The multi-head self
attention mechanism was replaced by a multi-linear
attention mechanism with a view to improving LM
performance and reducing parameter number (Ma
et al., 2019). Bengali and Hindi language, having
unique characteristics, remain open as to what strat-
egy to use for model development in such domains.

One dimensional version of CNNs have been
used recently for text classification oriented tasks
(Wang et al., 2018; Moriya and Shibata, 2018; Le
et al., 2018). Pham et al. (2016) studied CNN
application in LM showing the ability of CNNs to
extract LM features at a high level of abstraction.
Furthermore, dilated conv was employed in Bengali
LM with a view to solving long range dependency
problem (Roy, 2019).

6 Conclusion

We have proposed Coordinated CNN (CoCNN) that
introduces two 1D CNN based key concepts: word
level VL and sentence level TC. Detailed inves-
tigation in three deep learning paradigms (CNN,
LSTM and Transformer) shows the effectiveness
of CoCNN in Bengali and Hindi LM. We have
also shown a simple but effective enhancement of
CoCNN by introducing skip connection and paral-
lel conv branches in the VL and TC portion, respec-
tively. Future research may incorporate interesting
ideas from existing SOTA 2D CNNs in CoCNN.
Over-parametrization and innovative scheme for
CoCNN pretraining are expected to increase its LM
performance even further. Code has been provided
as supplementary material. Dataset will be made
publicly available upon acceptance.

Acknowledgments

This work was supported by Bangladesh Infor-
mation and Communication Technology (ICT) di-
vision [grant number: 56.00.0000.028.33.095.19-
85] as part of their Enhancement of Bengali Lan-
guage project.

55

References
Martín Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
2016. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467.

Rami Al-Rfou, Dokook Choe, Noah Constant, Mandy
Guo, and Llion Jones. 2019. Character-level lan-
guage modeling with deeper self-attention. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, volume 33, pages 3159–3166.

Zhenisbek Assylbekov, Rustem Takhanov, Bagdat
Myrzakhmetov, and Jonathan N. Washington. 2017.
Syllable-aware neural language models: A failure
to beat character-aware ones. In Proceedings of
the 2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1866–1872, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

Ben Athiwaratkun, Andrew Wilson, and Anima Anand-
kumar. 2018. Probabilistic FastText for multi-sense
word embeddings. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1–11,
Melbourne, Australia. Association for Computational
Linguistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Loïc Barrault, Ondřej Bojar, Marta R. Costa-jussà,
Christian Federmann, Mark Fishel, Yvette Gra-
ham, Barry Haddow, Matthias Huck, Philipp Koehn,
Shervin Malmasi, Christof Monz, Mathias Müller,
Santanu Pal, Matt Post, and Marcos Zampieri. 2019.
Findings of the 2019 conference on machine trans-
lation (WMT19). In Proceedings of the Fourth Con-
ference on Machine Translation (Volume 2: Shared
Task Papers, Day 1), pages 1–61, Florence, Italy. As-
sociation for Computational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Ondřej Bojar, Vojtěch Diatka, Pavel Straňák, Aleš Tam-
chyna, and Daniel Zeman. 2014. HindEnCorp 0.5.
LINDAT/CLARIAH-CZ digital library at the Insti-
tute of Formal and Applied Linguistics (ÚFAL), Fac-
ulty of Mathematics and Physics, Charles University.

Deng Cai and Hai Zhao. 2016. Neural word segmenta-
tion learning for chinese. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 409–420.

Jianfeng Gao, Joshua Goodman, Mingjing Li, and Kai-
Fu Lee. 2002. Toward a unified approach to statistical

language modeling for chinese. ACM Transactions
on Asian Language Information Processing (TALIP),
1(1):3–33.

Gaurav. 2019. Wikipedia. https:
//www.kaggle.com/disisbig/
hindi-wikipedia-articles-172k.

Daniela Gerz, Ivan Vulić, Edoardo Ponti, Jason Narad-
owsky, Roi Reichart, and Anna Korhonen. 2018. Lan-
guage modeling for morphologically rich languages:
Character-aware modeling for word-level prediction.
Transactions of the Association for Computational
Linguistics, 6:451–465.

HASOC. 2019. Hindi hate speech dataset.
https://hasocfire.github.io/hasoc/
2019/dataset.html.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R Salakhutdinov. 2012.
Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint
arXiv:1207.0580.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Kazuki Irie, Albert Zeyer, Ralf Schlüter, and Hermann
Ney. 2019. Language modeling with deep transform-
ers. arXiv preprint arXiv:1905.04226.

Md Aminul Islam, Md Fasihul Kabir, Khandaker
Abdullah-Al-Mamun, and Mohammad Nurul Huda.
2016. Word/phrase based answer type classification
for bengali question answering system. In 2016 5th
International Conference on Informatics, Electronics
and Vision (ICIEV), pages 445–448. IEEE.

Bhuwnesh Jain. 2018. Patrika. https://epaper.
patrika.com/.

Divyanshu Kakwani. 2020. Ai4bharat. https://
github.com/ai4bharat.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
Proceedings of NAACL-HLT, pages 4171–4186.

Toufique Imrose Khalidi. 2015. Bdnews24. https:
//bdnews24.com/.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In Thirtieth AAAI conference on artificial
intelligence.

Hoa T Le, Christophe Cerisara, and Alexandre Denis.
2018. Do convolutional networks need to be deep
for text classification? In Workshops at the Thirty-
Second AAAI Conference on Artificial Intelligence.

https://doi.org/10.18653/v1/D17-1199
https://doi.org/10.18653/v1/D17-1199
https://doi.org/10.18653/v1/P18-1001
https://doi.org/10.18653/v1/P18-1001
https://doi.org/10.18653/v1/W19-5301
https://doi.org/10.18653/v1/W19-5301
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
http://hdl.handle.net/11858/00-097C-0000-0023-625F-0
https://www.kaggle.com/disisbig/hindi-wikipedia-articles-172k
https://www.kaggle.com/disisbig/hindi-wikipedia-articles-172k
https://www.kaggle.com/disisbig/hindi-wikipedia-articles-172k
https://doi.org/10.1162/tacl_a_00032
https://doi.org/10.1162/tacl_a_00032
https://doi.org/10.1162/tacl_a_00032
https://hasocfire.github.io/hasoc/2019/dataset.html
https://hasocfire.github.io/hasoc/2019/dataset.html
https://epaper.patrika.com/
https://epaper.patrika.com/
https://github.com/ai4bharat
https://github.com/ai4bharat
https://bdnews24.com/
https://bdnews24.com/

56

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ping Luo, Xinjiang Wang, Wenqi Shao, and Zhanglin
Peng. 2018. Towards understanding regularization in
batch normalization. In International Conference on
Learning Representations.

Xindian Ma, Peng Zhang, Shuai Zhang, Nan Duan,
Yuexian Hou, Ming Zhou, and Dawei Song. 2019.
A tensorized transformer for language modeling. In
Advances in Neural Information Processing Systems,
pages 2232–2242.

Prianka Mandal and BM Mainul Hossain. 2017.
Clustering-based bangla spell checker. In 2017 IEEE
International Conference on Imaging, Vision & Pat-
tern Recognition (icIVPR), pages 1–6. IEEE.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2017. Regularizing and optimizing lstm lan-
guage models. arXiv preprint arXiv:1708.02182.

Tomáš Mikolov, Stefan Kombrink, Lukáš Burget, Jan
Černockỳ, and Sanjeev Khudanpur. 2011. Extensions
of recurrent neural network language model. In 2011
IEEE international conference on acoustics, speech
and signal processing (ICASSP), pages 5528–5531.
IEEE.

Tomáš Mikolov, Ilya Sutskever, Anoop Deoras, Hai-
Son Le, Stefan Kombrink, and Jan Cernocky.
2012. Subword language modeling with neu-
ral networks. preprint (http://www. fit. vutbr.
cz/imikolov/rnnlm/char. pdf), 8:67.

Alamgir Mohiuddin. 2019. Nayadiganta. https://
www.dailynayadiganta.com/.

Shun Moriya and Chihiro Shibata. 2018. Transfer learn-
ing method for very deep cnn for text classification
and methods for its evaluation. In 2018 IEEE 42nd
Annual Computer Software and Applications Confer-
ence (COMPSAC), volume 2, pages 153–158. IEEE.

Sanjay Pandey. 2018. Hindinews. https://www.
dailyhindinews.com/.

Ngoc-Quan Pham, German Kruszewski, and Gemma
Boleda. 2016. Convolutional neural network lan-
guage models. In Proceedings of the 2016 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 1153–1162.

Matiur Rahman. 2017. Prothom-alo. https://www.
prothomalo.com/.

Xin Rong. 2014. word2vec parameter learning ex-
plained. arXiv preprint arXiv:1411.2738.

Shuvendu Roy. 2019. Improved bangla language mod-
eling with convolution. In 2019 1st International
Conference on Advances in Science, Engineering and
Robotics Technology (ICASERT), pages 1–4. IEEE.

Sourav Saha, Faria Tabassum, Kowshik Saha, and Mar-
jana Akter. 2019. BANGLA SPELL CHECKER AND
SUGGESTION GENERATOR. Ph.D. thesis, United
International University.

Shashi Shekhar. 2018. Livehindustan. https://
www.livehindustan.com/.

Md Habibur Rahman Sifat, Chowdhury Rafeed Rahman,
Mohammad Rafsan, and Hasibur Rahman. 2020.
Synthetic error dataset generation mimicking bengali
writing pattern. In 2020 IEEE Region 10 Symposium
(TENSYMP), pages 1363–1366. IEEE.

J Fritz Staal. 1963. Sanskrit and sanskritization. The
Journal of Asian Studies, 22(3):261–275.

Martin Sundermeyer, Ralf Schlüter, and Hermann Ney.
2012. Lstm neural networks for language modeling.
In Thirteenth annual conference of the international
speech communication association.

Sho Takase, Jun Suzuki, and Masaaki Nagata. 2019.
Character n-gram embeddings to improve rnn lan-
guage models. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, pages
5074–5082.

Abhishek Thakur. 2019. Hindi oscar corpus.
https://www.kaggle.com/abhishek/
hindi-oscar-corpus.

Naushad UzZaman and Mumit Khan. 2004. A bangla
phonetic encoding for better spelling suggesions.
Technical report, BRAC University.

Naushad UzZaman and Mumit Khan. 2005. A double
metaphone encoding for bangla and its application in
spelling checker. In 2005 International Conference
on Natural Language Processing and Knowledge
Engineering, pages 705–710. IEEE.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Shiyao Wang, Minlie Huang, and Zhidong Deng. 2018.
Densely connected cnn with multi-scale feature at-
tention for text classification. In IJCAI, pages 4468–
4474.

Tzu-Hsuan Yang, Tzu-Hsuan Tseng, and Chia-Ping
Chen. 2016. Recurrent neural network-based lan-
guage models with variation in net topology, lan-
guage, and granularity. In 2016 International Confer-
ence on Asian Language Processing (IALP), pages
71–74. IEEE.

https://www.dailynayadiganta.com/
https://www.dailynayadiganta.com/
https://www.dailyhindinews.com/
https://www.dailyhindinews.com/
https://www.prothomalo.com/
https://www.prothomalo.com/
https://www.livehindustan.com/
https://www.livehindustan.com/
https://www.kaggle.com/abhishek/hindi-oscar-corpus
https://www.kaggle.com/abhishek/hindi-oscar-corpus

